Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET , так и J-FET ). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов - эквивалентное последовательное сопротивление (ЭПС или ESR ).

С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.

Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR - MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс . Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. вариант без корпуса, а с корпусом.

Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 - прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и "рассыпуха" - планарные конденсаторы и резисторы.

Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания .

На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.

Итак, каковы же возможности данного тестера?

Замер ёмкости и параметров электролитического конденсатора.

Также советую заглянуть на страничку, где рассказывается о разновидностях полевых транзисторов и их обозначении на схеме . Это поможет понять, что же вам показывает прибор.

Проверка биполярных транзисторов.

В качестве подопытного "кролика" возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э ) и напряжение смещения Б-Э (открытия транзистора) Uf . Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 ~ 0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).

Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.

Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.

Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.

Проверка диодов универсальным тестером.

Образец для испытаний - диод 1N4007.

Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf . В техдокументации на диоды указывается как V F - Forward Voltage (иногда V FM ). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.

Для данного диода 1N4007 : V F =677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.

Кроме этого тестер замеряет и ёмкость p-n перехода (C =8pF).

Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!

Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.

Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.

Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.

Проверка сдвоенного диода MBR20100CT .

Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как V F ), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.

Проверка резисторов.

Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.

Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома. Вот пример. Резистор сопротивлением 0,1 Ома (R10).

Замер индуктивности катушек и дросселей.

На практике не менее востребована функция замера индуктивности у катушек и дросселей . И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.

На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).

Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току - 1 Ом (1,0Ω).

Маломощные симисторы данный тестер проверяет без проблем. Я, например, проверял им MCR22-8 .

А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись "? No, unknown or damaged part" , что в вольном переводе означает "Отсутствует, неизвестная или повреждённая деталь".

Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.

Я был обрадован ещё и тем, что данным прибором можно проверить оптопары. Правда, проверить такие «составные» детали можно только в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.

Покажу на примере. Вот внутреннее устройство оптопары TLP627.

Излучающий диод подключается к выводам 1 и 2. Подключим их к клеммам прибора и посмотрим, что он нам покажет.

Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары.

На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер "видит" только его.

Так мы проверили исправность оптопары TLP627. Похожим образом мне удалось проверить и маломощное твёрдотельное реле типа К293КП17Р.

Теперь расскажу о том, какие детали этим тестером НЕ проверить.

    Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;

    Стабилитроны . Определяет как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V.
    При ремонте всё-таки рекомендую не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет»;

    Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные. Думаю, пояснения излишни;

    Динисторы . Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3;

    Ионисторы прибор также не распознаёт. Видимо из-за большого времени заряда;

    Варисторы определяет как конденсаторы;

    Однонаправленные супрессоры определяет как диоды.

Универсальный тестер не останется без дела у любого радиолюбителя, а радиомеханикам сэкономит кучу времени и денег.

Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такое бывало. Думаю, не надо объяснять, что это свидетельствует о негодности радиодетали.

Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.

Давно хотел купить/собрать эту приблуду. Купить рука не поднялась, уж больно китайцы оптимизировали оригинальную идею и готовый продукт вышел у них печальный. Потратив в общей сложности недельку и немножко больше денег собрал почти бескомпромиссную версию - энкодер, зарядка лития и тестер стабилитронов мне были не нужны.

Существуют две версии этого тестера:


стандартная схема с авто-выключением - "mega328_strip_grid"

Слегка допилил установкой дроселя по питанию и емкости на ИОН-е и КРЕН-ке, смотри UDP2 в конце статьи.


допиленная схема, смотри UDP2

Развел одностороннюю плату в Орле.


моя версия платы

Определил фьюзы для ATmega328P.


фьюзы для ATmega328

UDP1 : Всем кто сидит на версии 1.12 советую сменить прошивку на 1.13, меньше глюков и работает стабильнее.

UDP2 : C добавлением емкости на ИОН-е я погорячился. Дело в том, что шайтан коробка для увеличения разрешающей способности при измерении маленьких напряжений, переключается на внутренний 1.1в ИОН. Поэтому советуют заменить электролит С102 в моей схеме на 1nF.

Хочу поделится очень полезной для каждого радиолюбителя схемой, найденной на просторах интернета и успешно повторенную. Это действительно очень нужный прибор, имеющий много функций и собранный на основе недорогого микроконтроллера ATmega8. Деталей минимум, поэтому при наличии готового программатора собирается за вечер.

Данный тестер с высокой точностью определяет номера и типы выводов транзистора, тиристора, диода и т.д. Будет очень полезен как начинающему радиолюбителю, так и профессионалам.

Особенно незаменим он в тех случаях, когда имеются запасы транзисторов с полустёртой маркировкой, или если не получается найти даташит на какой-нибудь редкий китайский транзистор. Схема на рисунке, кликните для увеличения или скачайте архив:

Типы тестируемых радиоэлементов

Имя элемента - Индикация на дисплее :

NPN транзисторы - на дисплее "NPN"
- PNP транзисторы - на дисплее "PNP"
- N-канальные-обогащенные MOSFET - на дисплее "N-E-MOS"
- P-канальные-обогащенные MOSFET - на дисплее "P-E-MOS"
- N-канальные-обедненные MOSFET - на дисплее "N-D-MOS"
- P-канальные-обедненные MOSFET - на дисплее "P-D-MOS"
- N-канальные JFET - на дисплее "N-JFET"
- P-канальные JFET - на дисплее "P-JFET"
- Тиристоры - на дисплее "Tyrystor"
- Симисторы - на дисплее "Triak"
- Диоды - на дисплее "Diode"
- Двухкатодные сборки диодов - на дисплее "Double diode CK"
- Двуханодные сборки диодов - на дисплее "Double diode CA"
- Два последовательно соединенных диода - на дисплее "2 diode series"
- Диоды симметричные - на дисплее "Diode symmetric"
- Резисторы - диапазон от 0,5 К до 500К [K]
- Конденсаторы - диапазон от 0,2nF до 1000uF

Описание дополнительных параметров измерения:

H21e (коэффициент усиления по току) - диапазон до 10000
- (1-2-3) - порядок подключенных выводов элемента
- Наличие элементов защиты - диода - "Символ диода"
- Прямое напряжение - Uf
- Напряжение открытия (для MOSFET) - Vt
- Емкость затвора (для MOSFET) - C=

В списке приводится вариант отображения информации для английской прошивки. На момент написания статьи появилась русская прошивка, с которой всё стало гораздо понятнее. для программирования контроллера ATmega8 можно тут.

Сама конструкция получается довольно компактной - примерно с пачку сигарет. Питание от батареи "крона" на 9В. Потребляемый ток 10-20мА.

Для удобства подключения испытуемых деталей, надо подобрать подходящий универсальный разъём. А лучше несколько - для различных типов радиодеталей.

Кстати, у многих радиолюбителей часто возникают проблемы с проверкой полевых транзисторов, в том числе с изолированным затвором. Имея данное устройство, вы сможете за пару секунд узнать и его цоколёвку, и работоспособность, и ёмкость перехода, и даже наличие встроенного защитного диода.

Планарные smd транзисторы тоже с трудом поддаются расшифровке. А многие радиодетали для поверхностного монтажа иногда не удаётся даже примерно определению - или то диод, или что ещё...

Что касается обычных резисторов, то и тут налицо превосходство нашего тестера над обычными омметрами, входящими в состав цифровых мультиметров DT. Здесь реализовано автоматическое переключение необходимого диапазона измерения.

Это касается и проверки конденсаторов - пикофарады, нанофарады, микрофарады. Просто подключите радиодеталь к гнёздам прибора и нажмите кнопку TEST - на экране сразу отобразится вся основная информация о элементе.

Готовый тестер можно разместить в любом небольшом пластмассовом корпусе. Устройство собрано и успешно испытано.

Обсудить статью ТЕСТЕР ПОЛУПРОВОДНИКОВЫХ РАДИОЭЛЕМЕНТОВ НА МИКРОКОНТРОЛЛЕРЕ

Сегодня я попробую рассказать об одном из самых популярных самодельных измерительных приборов. Вернее не только о самом приборе, а о конструкторе для его сборки.
Скажу сразу, его можно найти дешевле в уже собранном виде, но что заменит интерес от сборки прибора своими руками?
В общем кому интересно, заходите:)

Этот прибор не зря считается одним из самых популярных мультиизмерительных приборов.
Заслужил он это за счет своей простоты в сборке, большой функциональности и довольно неплохих характеристик.
Появился он довольно давно, придумал его немец Маркус Фрейек, но как то так получилось, что на одном из этапов он перестал развивать этот и дальше им другой немец, Карл-Хайнц Куббелер.
Так как деталей он содержит не очень много, то его сразу стали повторять и дорабатывать различные радиолюбители и энтузиасты своего дела.
Я примерно с год назад выкладывал пару вариантов для повторения.
имел дополнение в виде автономного питания от литиевого аккумулятора и зарядное для него.
я дорабатывал чуть больше, основные отличия - немного доработана схема подключения энкодера, переделано управление повышающим преобразователем для проверки стабилитронов, произведена программная доработка, в результате которой при проверке стабилитронов не надо держать кнопку нажатой, ну и на эту плату также перенесены преобразователь для аккумулятора и зарядное.
На момент публикации второй вариант был почти максимальным, не хватало только разве что графического индикатора.

В этом обзоре я расскажу о более простой, но при этом более наглядной версии прибора (за счет применения графического дисплея), вполне доступной для повторения радиолюбителю начинающего уровня.

Начну обзор как всегда с упаковки.
Пришел набор в небольшом картонном коробочке, это уже лучше, чем в прошлые разы, но все равно, хотелось бы видеть для таких наборов более красивую упаковку, с цветной полиграфией, из более плотного картона.
Внутри коробочки лежал набор в антистатическом пакете.

Весь комплект запаян в антистатический пакет, пакет с защелкой, потому может пригодится в будущем для чего нибудь:)

После распаковки выглядело это скажем так, «кучкообразно», но стоит отметить, дисплей был уложен лицевой стороной к печатной плате, потому повредить его будет довольно сложно, хотя почта иногда делает и невозможное возможным.

Сегодняшний обзор будет немного упрощен в сравнении с предыдущими обзорами конструкторов, так как ничего особо нового в плане монтажа я сказать не могу, а повторять не очень хочется. Но на радиоэлементах, которых не было в прошлых обзорах, я все таки немного задержусь.

Печатная плата имеет размеры 75х63мм.
Качество изготовления хорошее, от процесса сборки и пайки остались только положительные эмоции.



Как и на печатной плате DDS генератора, здесь также имеется нормальная маркировка радиоэлементов и также нет схемы в комплекте.
Аналогично плате DDS генератора производитель применил тот же ход с двойными межслойными переходами. правда в одном месте зачем то оставил небольшой «хвостик» из дорожки.

«Мозгом» устройства является микроконтроллер Atmega328 производства Atmel. Это далеко не самый мощный микроконтроллер, который используют для этого прибора. Я использовал Atmega644, еще вроде есть версии и под ATmega1284.
На самом деле дело не в «мощности» микроконтроллера, а в количестве флеш памяти для хранения программы. Устройство постепенно обрастает новыми возможностями, а программа увеличивается в объеме, потому используют более «мозговитые» контроллеры.
После проверки прибора и его возможностей могу сказать, что похоже здесь микроконтроллер используется по максимуму, но в то же самое время старшая версия не привнесла бы скорее всего ничего нового, так как без доработок платы ничего не улучшить.

В устройстве применен графический 128х64 дисплей.
В исходном варианте прибора использовался дисплей, содержащий 2 строки по 16 символов, как и в моем первом варианте.
Дальнейшее расширение проекта было в применении дисплея с уже четырьмя строками по 20 символов, так как зачастую на мелком дисплее вся информация просто не влезала.
После этого, для повышения удобства пользования разработчик решил перейти на графический дисплей. Ключевое отличие - на графическом дисплее можно выводить графическое обозначение проверяемого компонента.

А вот и весь комплект.

Естественно приведу принципиальную схему устройства:)
Вообще изначально я начал перерисовывать схему с платы, но в процессе решил поискать ее в интернете и нашел. Правда в найденной схеме выяснилась одна небольшая неточность, хотя она и была от этого набора. На схеме отсутствовали два резистора и конденсатор, ответственные за вход измерения частоты.

Распишу ключевые узлы схемы отдельно.
Красным цветом выделен самый ответственный узел, это сборка из шести резисторов, к ним надо подходить с особой тщательностью, от точности этих резисторов зависит полученная точность прибора. Устанавливать их надо правильно, так как если перепутать, то прибор будет работать, но показания будут несуразными.
Зеленым цветом выделен узел формирования опорного напряжения. Этот узел не менее важен, но более повторяем, так как регулируемый стабилитрон TL431 найти куда проще, чем точные резисторы
Синим цветом обозначен узел управления питанием.
Схема сделана таким образом, что после нажатия на кнопку поступает питание на микроконтроллер, дальше он сам «удерживает» питание включенным и может сам себе его отключить при необходимости.

Остальные узлы довольно стандартны и особого интереса не имеют, это кварцевый резонатор, подключение дисплея и стабилизатор питания 5 Вольт.

Как я выше писал, схема стала популярной благодаря своей простоте. В изначальном варианте отсутствовал узел подключения энкодера (резисторы R17, 18, 20, 21) и узел входа частотомера (R11, 13 и С6).
Вся основа прибора лежит скорее в алгоритме перебора вариантов переключения выходов, подключенных к матрице резисторов и измерении полученных напряжений.
Это в свое время и сделал Маркус Фрейек, положив тем самым начало работам со столь интересным прибором.
Всеми дополнительными опциями схема начала обрастать уже скорее после того, как ею занялся Карл-Хайнц Куббелер. Я могу немного ошибаться, но насколько я знаю, уже потом прибор «научился» измерять частоту, работать сам как генератор частот, измерять ESR конденсаторов, проверять кварцевые резонаторы и стабилитроны и т.д.
В процессе всего этого устройством заинтересовались китайские производители и выпустили на базе одного из вариантов конструктор, а также выпускают и готовые версии прибора.

Как я писал выше, ключевым элементом схемы является несколько резисторов, которые должны иметь хорошую точность.
В данном конструкторе производитель дал в комплекте резисторы с заявленной точностью 0.1%, обозначается это последней полоской фиолетового цвета, за что ему отдельное спасибо.
В определения номинала резисторов выше точность только 0.05%.
Часто поиск точных резисторов может стать проблемой на этапе сборки такого прибора.

После установки на плату этих резисторов я рекомендую перейти к резисторам с номиналом 10к так как их больше всех и потом будет проще искать остальные.

Также в комплекте были резисторы и с другими номиналами, для удобства сборки я распишу их маркировку.
2шт 1к
2шт 3,3к
2шт 27к
1шт 220 Ом
1шт 2,2к
1шт 33к
1шт 100к

После установки всех резисторов плата должна выглядеть примерно так

По поводу монтажа конденсаторов и кварцевого резонатора вопросов возникнуть не должно, маркировку я объяснял в одном из прошлых обзоров, стоит просто быть внимательными и все.
Обратить внимание следует только на конденсатор 10нФ (маркировка 103) и на полярность электролитических конденсаторов.

Печатная плата после монтажа конденсаторов.

В комплекте было три транзистора, стабилизатор напряжения 7550 и регулируемый стабилитрон TL431.
Ставим на плату соответственно маркировке, обозначена и позиция элемента и как его ставить.

Почти все основные компоненты установлены.

Не забываем про правильность установки панельки под микроконтроллер, неправильно установленная панель может потом не слабо попортить нервы.

И так, основная часть монтажа компонентов закончена, на этом этапе вполне можно перейти к пайке.
Меня часто спрашивают, чем я пользуюсь при пайке.
Я использую припой неизвестного производителя, был куплен случайно, но много. Качество отличное, но где такой купить не подскажу так как не знаю, дело было довольно давно.
Припой с флюсом, поэтому на таких платах дополнительный флюс не использую.
Паяльник самый обычный - Соломон, но подключенный к миниатюрной паяльной станции, вернее к блоку питания (паяльник на 24 Вольта) с стабилизацией температуры.

Плата паялась отлично, не было ни одного места, где бы мне понадобилось использовать дополнительно флюс или зачищать что нибудь.

«Мелкота» запаяна, можно перейти к более габаритным компонентам:
ZIF панель на 14 выводов
Энкодер
Гнездовая часть разъема дисплея
Светодиод.

Немного опишу пару новых элементов.
Первый это энкодер.

В Википедии нашел картинку. которая немного поясняет работу энкодера.

А если просто и в двух словах то это будет звучать скорее так:
Энкодер (мы говорим о том, который на фото), это два замыкающих контакта, которые замыкаются при вращении ручки.
Но замыкаются они хитрым образом, при вращении в одну сторону сначала замыкается первый, потом второй, после этого размыкается первый, потом второй.
при вращении ручки в противоположную сторону все происходит полностью наоборот.
По очередности замыкания контактов микроконтроллер определяет в какую сторону вращают ручку. Ручка энкодера крутится на 360 градусов и не имеет стопора, как у переменных резисторов.
Используют их для разных целей, одно их них - орган регулировки разных электронных приборов.
Также иногда совмещают с кнопкой, контакты которой замыкаются при нажатии на ручку, в данном конструкторе применен именно такой.

Энкодеры бывают разные, с механическими контактами, с оптикой, с датчиками Холла и т.п.
Также они делятся на принцип работы.
Здесь применен Инкрементный энкодер, он просто выдает импульсы при вращении, но существуют и другие, например Абсолютный, он позволяет определить угол поворота ручки в любой момент времени, такие энкодеры используют в датчика угла поворота.
Для более любознательный ссылка на статью в .

Также в комплекте дали панельку. Но данная панелька отличается от предыдущей тем, что при установке в нее исследуемого компонента не надо прилагать усилие к контактам.
Панелька имеет два положения, соответственно на фото
1. Панель открыта, можно ставить компонент
2. Панель закрыта, контакты прижались к выводам компонента.
Кстати устанавливать и паять панель лучше в состоянии когда она открыта, так как контакты панели немного «гуляют» в зависимости от положения рычажка.

Немного об установке светодиода.
Иногда надо поднять светодиод над платой. Можно просто выставить его вручную, а можно немного упростить и улучшить процесс.
Я использую для этого изоляцию от многожильного кабеля.
Сначала определяется необходимая высота установки, после этого отрезается кусочек соответствующей длины и одевается на выводы.
Дальше дело техники, вставляем светодиод на место и запаиваем. Особенно такой способ выручает при монтаже нескольких светодиодов на одной высоте, тогда отрезаем необходимое количество трубочек одинаковой длины.
Дополнительный бонус - тяжелее светодиод отогнуть в сторону.

После установки и запаивания вышеуказанных компонентов можно перейти к заключительному этапу, установке дисплея.
Внимательный читатель заметит, что я сделал небольшую ошибку, которая выяснилась уже на этапе проверки.
Я неправильно припаял провода питания. Дело в том, что я по привычке припаял плюсовой вывод к квадратному пятачку, а минус к круглому В этом конструкторе сделано наоборот, это обозначено и маркировкой. Следует запаивать как обозначено на плате.
Но к счастью ничего не произошло, прибор просто не включился, так что можно записать в плюсы защиту от неправильной полярности подключения батареи.

Для начала устанавливаем и привинчиваем монтажные стойки. Устанавливать сначала надо именно на основную плату.
Затем вставляем штыревую часть разъема в гнездовую.

Дело в том, что дисплей имеет много контактов, а используется всего лишь часть, потому приходится монтировать именно в такой последовательности.
Устанавливаем дисплей на родное место.

В итоге у нас должны совпасть крепежные отверстия.
Если дисплей стоит ровно, то контакты попадут сами как надо.
Перед пайкой не забываем закрыть чем нибудь лицевую часть дисплея.

Все собрано, но остался один компонент. но не волнуйтесь, мы ничего не забыли запаять и производитель положил его не случайно.
На самом деле он не лишний, а наоборот, даже очень необходимый.

В комплекте дали конденсатор емкостью 0.22мкФ.
Данный конденсатор будет необходим на этапе калибровки прибора. На мой взгляд производитель правильно сделал что положил его в комплекте, это позволяет произвести калибровку прибора без поиска дополнительных компонентов.

Все, подключаем батарейку и..., ничего не происходит:)
Все нормально, хоть схема и не имеет явного выключателя питания, но он есть.
Для включения прибора надо нажать на ручку энкодера. после этого на процессор пойдет питание и одновременно он выдаст команду на узел управления питанием и будет сам удерживать его включенным.

Все, включился, но явно чем то недоволен, вон сколько написал на экране.
Попробуем разобраться что ему не так.

Для начала прибор выдает на экран напряжение батареи и пытается перейти в режим проверки компонента.
Так как ничего не подключено, то он сообщает что мол элемент отсутствует или поврежден.
Но прибор не откалиброван и после этого выдает соответствующее сообщение:
Не откалиброван!
Для калибровки необходимо замкнуть все три контакта панели (в нашем случае средний и два из левой и правой тройки) и включить прибор. На самом деле можно это сделать немного по другому и об этом я напишу дальше.

После сообщения - isolate probe следует убрать перемычку и оставить контакты свободными.
Затем, после соответствующего уведомления, надо будет установить конденсатор, который нам дали, на клеммы 1 и 3.

Ну что же, попробуем откалибровать.
1. Для этого я просто перешел в меню, подержав кнопку включения пару секунд и выбрал режим Selftest.
Переход в меню - длительное удержание кнопки энкодера.
Перемещение по меню - вращение энкодера
Выбор параметра или режима - короткое нажатие на кнопку энкодера

2. Прибор выдает сообщение - закоротите контакты. Для этого можно использовать отрезок провода, кусочки перемычки, не важно, главное соединить все три контакта вместе.
3, 4. прибор производит измерение сопротивления перемычки, дорожек к панельке и т.д.

1, 2 Затем еще какие то непонятные измерения и наконец пишет - уберите перемычку.

Поднимаю рычажок и убираю перемычку, прибор продолжает что то измерять.

1. На этом этапе необходимо подключить к клеммам 1 и 3 конденсатор, который дали в комплекте (вообще можно использовать и другой, но проще тот что дали).
2. после установки конденсатора прибор продолжает измерения, во время всего процесса калибровки кнопку энкодера нажимать не надо, все происходит в автоматическом режиме.

Все, калибровка завершена успешно. Теперь прибором можно пользоваться.
при необходимости калибровку можно повторить, для этого надо опять выбрать в меню соответствующий пункт и проделать снова все вышеуказанные операции.

Немного пройдемся по пунктам меню и посмотрим что может прибор.
Transistor - измерение параметров полупроводников, сопротивления резисторов
Frequency - измерение частоты сигнала, подключенного к контактам платы GND и F-IN, они находятся справа вверху над дисплеем.
F-generator - Генератор прямоугольных импульсов разной частоты.
10bit PWM, - выводятся импульсы прямоугольной формы с регулируемой скважностью.
C+ESR - Я не совсем понял этот пункт меню, так как при его выборе на экран просто выводится эта надпись и все.
rotary encoder - проверка энкодеров.
Selftest - ну этим пунктом мы уже пользовались, запуск самокалибровки
Contrast - регулировка контрастности дисплея
Show data - лучше покажу немного позже.
Switch off - принудительное выключение прибора. Вообще прибор имеет автоотключение, но активно оно не во всех режимах.

Не знаю почему, но мне издалека это фото напомнило старый добрый VC.

Немного о непонятном мне пункте меню - Show data.
Я не понял его целевого назначения в плане эксплуатации прибора, так как в этом режиме на экран выводится то, что может отображаться на экране.
Кроме того, в этом режиме выводятся параметры автокалибровки.



Также в этом режиме отображаются и шрифты, которые выводятся на экран. я думаю что это скорее технологический пункт, просто для проверки как и что отображается, не более.
Последнее фото - режим регулировки контраста.
Изначально установлено 40, я пробовал регулировать, но как мне показалось, исходная установка и есть самая оптимальная.

С осмотром закончили, можно перейти к тестированию.
Так как прибор довольно универсальный, то я буду проверять просто разные компоненты, не обязательно точные, но позволяющие оценить возможности прибора.
Если интересно проверить какой то определенный тип компонента, пишите, добавлю.
1. Конденсатор 0,39025мкФ 1%
2. Конденсатор 7850пФ 0,5%
3. Какой то Jamicon 1000мкФ 25 Вольт
4. Capxon 680мкФ 35 Вольт, низкоимпедансный

Capxon 10000мкФ 25 Вольт

1. Резистор 75 Ом 1%
2. Резистор 47к 0.25%
3. Диод 1N4937
4. Диодная сборка 25CTQ035

1. Транзистор биполярный BC547B
2. Транзистор полевой IRFZ44N

1,2 - Дроссель 22мкГн
3, 4 - дроссели 100мкГн разных типов

1. Обмотка реле
2. Звукоизлучатель со встроенным генератором.

Проверим работу прибора в режиме генератора.
10КГц
100КГц
Как по мне, то даже на 100КГц форма импульсов вполне приемлема.

Максимальная частота генератора составляет 2МГц, конечно здесь все выглядит печальнее, но щуп осциллографа стоял в режиме 1:1, да и сам осциллограф не очень высокочастотный.
Ниже пункт - 1000.000мГц, не надо путать с МГц. это так обозвали сигнал с частотой 1Гц:)

Режим выхода с регулируемой скважностью сигнала.
Частота 8КГц

А теперь посмотрим на возможности встроенного частотомера.
В качестве генератора использовался встроенный генератор осциллографа.
1. 10Гц прямоугольник
2. 20КГц синус
3. 200КГц прямоугольник
4. 2МГц прямоугольник

А вот на 4МГц частотомер «сдулся». Максимально измеряемая частота составляет 3.925МГц, что в принципе также весьма неплохо для многофункционального прибора.
К сожалению точность измерения частоты проверить довольно тяжело, так как редко у кого есть хороший калиброванный генератор, но в большинстве любительских применений данной точности вполне достаточно.

Ну и в конце групповое фото.
Два прибора из предыдущих обзоров вместе с их новым «собратом».

Резюме.
Плюсы
Хорошее изготовление печатной платы.
Полный комплект для сборки действующего прибора + конденсатор для калибровки
0.1% резисторы в комплекте
Очень легкий и приятный в сборке, подойдет даже совсем начинающим
Хорошие характеристики полученного прибора.
Случайно выяснил, что у прибора есть защита от переполюсовки питания:)

Минусы
Упаковка конструктора совсем простенькая
Питание от батарейки, гораздо лучше смотрелось бы питание от аккумулятора

Мое мнение. На мой взгляд получился очень хороший конструктор. Как подарок начинающему радиолюбителю я бы его вполне рекомендовал. Не хватает корпуса, и питания от аккумулятора, батарейка долго не прослужит, а стоят они весьма недешево.
Приятно порадовало то, что в комплекте дали «правильные» резисторы и конденсатор для калибровки. Первое положительно сказывается на точности, второе на удобстве, не надо искать конденсатор для калибровки. Можно откалибровать и использовать сразу после сборки.
Конечно данный набор выходит дороже чем то же самое, но в собранном виде, но как оценить стоимость процесса самостоятельной сборки и полученных при этом навыков и хоть и небольшого, но опыта?

На этом пожалуй все, надеюсь что обзор был интересным и полезным. Буду рад вопросам и пожеланиям по дополнению обзора.
А на подходе у меня обзор еще одного небольшого, но надеюсь интересного приборчика, исходного варианта которого я пока не нашел, но что он из себя представляет покажут тесты.

Дополнение - на скачивание инструкции по сборке (на английском языке)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +139 Добавить в избранное Обзор понравился +103 +232

Хочу рассказать вам об удачной покупке на сайте Aliexpress.


Lcr-t4 - это комбинированный электронный прибор, который может измерять ёмкость конденсаторов, сопротивление резисторов, индуктивности катушек. Lcr-t4 может определять параметры транзисторов, диодов. Причем он покажет вам тип транзистора, его характеристики, обозначение выводов транзистора на графическом ЖК-дисплее.

Серцем Lcr-t4 является микроконтроллер ATmega328. Позднее я узнал, что Lcr-t4 - это фактически самоделка товарища Karl-Heinz Kubbeler, которую он сделал на основе самоделки другого товарища Markus Frejek, которую он называл «AVR-Transistortester». Они разработали это чудо электронной техники, разместили в свободном доступе в сети internet схему, программное обеспечение, описание. Теперь это устройство получило название «Тестер ЭРЭ с AVR микроконтроллером и минимум дополнительных элементов». Его делают радиолюбители всего мира на других микроконтроллерах, изменяют конструкцию, используют различного вида дисплеи и, естественно, изменяют программное обеспечение. Lcr-t4 – это один из возможных вариантов «Тестера ЭРЭ с AVR микроконтроллером и минимум дополнительных элементов». Поэтому мы можем использовать техническую инструкцию для «Тестера ЭРЭ с AVR микроконтроллером и минимум дополнительных элементов», переведённую в 2015 году для версии программного обеспечения № 1.12к Сергеем Базыкиным.

Так же можно ознакомиться с документацией по «AVR-Transistortester» по ссылкам в сети интернет:



Lcr-t4 – изготовлен в заводских условиях, обладает хорошими характеристиками по точности измерения сопротивления резисторов, ёмкости конденсаторов, индуктивности катушек. Это проверено мною на практике. Lcr-t4 - очень нужный, недорогой измерительный прибор, который радиолюбитель должен иметь в своей лаборатории.

Характеристики, которые заявляет продавец:
Диапазон измерения сопротивления резисторов: минимальное 0.1 ом 50 Мом;
Диапазон измерения емкости конденсаторов: минимальное 25 пФ, максимальное 100000 мкФ;
Диапазон индукций: минимальное 0.01 мН, максимальное 20 Н.

Хочется рассказать, что у Lcr-t4 можно поменять прошивку на новую с новыми возможностями. Я видел, как это делалось, но сам не повторял. Для этого на плату впаивается разъём (смотри фото ниже) и помощью программатора для микроконтроллеров AVR меняется прошивка прибора.


Использовать в качестве источника питания батарею крона напряжением 9 вольт не совсем экономично. Я использую блок питания на 12 вольт и DC/DC преобразователь, который понижает напряжение до 9 вольт. У меня работает нормально.
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png