В последнее время я искал способы упростить изготовление печатных плат. Приблизительно с год назад я наткнулся на одну интересную страничку , где описывался процесс модификации струйного принтера Epson для печати на толстых материалах в т.ч. на медном текстолите. В статье описывалась доработка принтера Epson C84, однако у меня был принтер Epson C86, но т.к. механика принтеров Epson я думаю у всех схожая, то я решил попробовать сделать модернизацию своего принтера.

В данной статье я постараюсь максимально подробно, шаг за шагом, описать процесс модернизации принтера для печати на омедненном текстолите.

Необходимые материалы:
- ну естественно понадобится сам принтер Epson семейства С80.
- лист алюминиевого, либо стального материала
- скобы, болты, гайки, шайбы
- небольшой кусок фанеры
- эпоксидка или суперклей
- чернила (об этом позже)

Инструменты:
- шлифмашинка (Dremel и т.п.) с отрезным кругом (можно попробовать маленькой обезьяной)
- различные отвертки, ключи, шестигранники
- дрель
- термофен

Шаг 1. Разбираем принтер

Первое, что я сделал - снял задний выходной лоток для бумаги. После этого надо снять передний лоток, боковые панели и затем основной корпус.

На фотографиях ниже приведен подробный процесс разборки принтера:

Шаг 2. Снимаем внутренние элементы принтера

После того, как у принтера снят корпус, необходимо поснимать некоторые внутренние элементы принтера. Сначала, необходимо снять датчик подачи бумаги. В дальнейшем он нам понадобится, поэтому при снятии не повредите его.

Затем, необходимо снять центральные прижимные ролики, т.к. они могут мешать при подаче печатной платы. В принципе боковые ролики тоже можно снять.

Ну и в конце, необходимо снять механизм очистки печатающей головки. Механизм держится на защелках и снимается очень просто, но при снятии, будьте очень осторожны, т.к. к нему подходят разные трубки.

Разборка принтера завершена. Теперь приступим к его "лифтингу".

Шаг 3. Снятие платформы печатающей головки

Начинаем процесс модернизации принтера. Работа требует аккуратности и применения защитных средств (глаза нужно беречь!).

Для начала необходимо открутить рейку, которая прикручена двумя болтами (см. фото выше). Открутили? Откладываем ее в сторону, она нам еще пригодится.

Теперь обратите внимание на 2 болта возле механизма очистки головки. Их также откручиваем. Однако, с левой стороны сделано немного по другому, там можно срезать крепления.
Чтобы снять всю платформу с головкой, сначала, все внимательно осмотрите и отметьте маркером те места, где надо будет резать метал. А потом аккуратно срежьте метал ручной шлифмашинкой (Dremel и т.п.)

Шаг 4. Очистка печатающей головки

Этот шаг является необязательным, но раз уж полностью разобрали принтер, то лучше сразу почистить печатающую головку. Тем более, что в этом нет ничего сложного. Для этой цели я использовал обычные ушные палочки и очиститель стекол.

Шаг 5. Установка платформы печатающей головки. Часть 1

После того, как все разобрано и очищенно настало время собирать принтер с учетом необходимого зазора для печати на текстолите. Или как говорят джиперы "лифтинг" (т.е. подъем). Величина лифтинга полностью зависит от того материала, на котором вы собираетесь печатать. В своей модификации принтера я планировал использовать стальной податчик материала с прикрепленным на нем текстолитом. Толщина платформы для подачи материала (сталь) была 1.5 мм, толщина фольгированного текстолита, из которого я обычно делал платы составляла также 1.5 мм. Однако, я решил, что головка не должна сильно давить материал, и поэтому величину зазора я выбрал около 9 мм. Тем более, что иногда я печатаю на двухстороннем текстолите, который немного толще одностороннего.

Для того, чтобы мне легче было контролировать уровень подьема, я решил использовать шайбы и гайки, толщину которых я замерил штанген-циркулем. Также, я прикупил несколько длинных болтов и гайки для них. Я начал с фронтальной системы подачи.

Шаг 6. Установка платформы печатающей головки. Часть 2

Перед установкой платформы для печатающей головки, необходимо изготовить небольшие перемычки. Я сделал их из уголков, которые распилил на 2 части (см. фото выше). Можно конечно их сделать самому.

После, я разметил отверстия для сверления в принтере. Нижние отверстия разметить и просверлить очень просто. Затем, сразу же прикрутил кронштейны на их место.

Следующим шагом необходимо разметить и просверлить верхние отверстия в платформе, это сделать несколько сложнее, т.к. все должно быть на одном уровне. Для этого, я подложил по паре гаек, в местах стыковки платформы с основой принтера. При помощи уровня, удостоверьтесь, что платформа стоит ровно. Отмечаем отверстия, сверлим и стягиваем болтами.

Шаг 7. "Лифтинг" механизма очистки печатающей головки

Когда принтер заканчивает печать, головка "паркуется" в механизм очистки головки, где происходит очистка дюз головки, для предотвращения их засыхания и засорения. Этот механизм также предстоит немного поднять.

Данный механизм я закрепил при помощи двух уголков (см. фото выше).

Шаг 8. Система подачи

На данной стадии рассмотрим процесс изготовления системы подачи и установку датчика подачи материала.

При разработке системы подачи первой проблемой была установка датчика подачи материала. Без данного датчика принтер не функционировал бы, но где и как его установить? Когда бумага проходит через принтер, то данный датчик сообщает контроллеру принтера, когда проходит начало бумаги и на основании этих данных принтер вычисляет точную позицию бумаги. Датчик подачи представляет из себя обычный фотосенсор с излучающим диодом. При прохождении бумаги (в нашем случае материала), луч в датчике прерывается.
Для сенсора и системы подачи я решал сделать платформу из фанеры.

Как видно на фото выше, я склеил между собой несколько слоев фанеры для того, чтобы сделать подачу на одном уровне с принтером. В дальнем углу платформы я закрепил датчик подачи, через который будет проходить материал. В фанере, я сделал небольшой вырез, чтобы вставить датчик.

Следующей задачей встала необходимость сделать направляющие. Для этого я использовал алюминиевые уголки, которые приклеил к фанере. Важно, чтобы все углы были четко 90 градусов и направляющие были строго параллельны друг другу. В качестве материала подачи я использовал алюминиевый лист, на который будет ложиться и фиксироваться омедненный текстолит для печати.

Лист подачи материала я изготовил из алюминиевого листа. Размер листа я старался сделать приблизительно равным формату А4. Немного почитав в интернете по работе датчика подачи бумаги и принтера в целом, я выяснил, что для корректной работы принтера необходимо в листе подачи материала сделать в углу небольшой вырез, чтобы датчик срабатывал немного позднее чем начинали крутиться ролики подачи. Длина выреза составила около 90мм.

После того, как все сделано, на листе подачи я закрепил обычный лист бумаги, на компьютере установил все драйвера и сделал пробную печать на обычном листе.

Шаг 9. Заполняем чернильный картридж

Последняя часть модификации принтера посвящена чернилам. Обычные чернила от Epson не стойкие к химическим процессам, протекающим при травлении печатной платы. Поэтому необходимо специальные чернила, называются они Mis Pro yellow ink . Однако, данные чернила могут не подойти к другим принтерам (не Epson), т.к. там могут использоваться другие типы печатающих головок (в Epson используется пьезоэлектрическая печатающая головка). В интернет-магазине inksupply.com есть доставка в Россию.

Помимо чернил, я купил новые картриджи, хотя конечно можно использовать и старые, если хорошо их помыть. Естественно, для заправки картриджей понадобится еще обычный шприц. Также, я купил специальный девайс для обнуления картриджей принтера (синий на фото).

Шаг 10. Тесты

Теперь переходим к тестам печати. В программе проектирования , я сделал несколько заготовок для печати, с дорожками различной толщины.

Качество печати вы можете оценить по фотографиям выше. А ниже представлено видео печати:

Шаг 11. Травление

Для травления плат, изготовленных данных способом, подходит только раствор хлорного железа. Другие методы травления (медный купорос, соляная кислота и т.п.) могут разъесть чернила Mis Pro yellow ink. При травлении хлорным железом, лучше нагревать печатную плату при помощи теплофена, это ускоряет процесс травления и т.о. меньше "сьедается" слой чернил.

Температура нагрева, пропорции и длительность травления подбираются опытным путем.

Для того чтобы сделать станок ЧПУ из принтера своими руками понадобятся следующие подручные материалы:

  • запчасти от нескольких принтеров (в частности привода и шпильки);
  • привод от винчестера;
  • несколько листов ДСП или фанеры, мебельные направляющие;
  • контроллер и драйвер;
  • крепежные материалы.

1. Основа представляет собой ящик из ДСП. Можно взять готовый или изготовить самостоятельно. Сразу учитываем, что внутренняя емкость ящика должна вмещать всю электронную начинку, поэтому высота борта рассчитывается от высоты платы с деталями, крепления и запаса до поверхности стола. Сборка основания и рамы из ДСП осуществляется посредством саморезов. При этом все детали должны быть ровными и закрепятся под прямым углом.

2. На крышку основы необходимо закрепить оси станка. Всего их три – x y z. Сначала крепим ось y. Для изготовления направляющей используется мебельный полоз на шариковых подшипниках.

Лучше использовать по две направляющих для двух горизонтальных осей, в противном случае оси будут иметь значительный люфт. Для вертикальной оси роль направляющей выполняют остатки винчестера, той его части, где двигался лазер.

В качестве ходового винта применяется шток от принтера. В данном случае для горизонтальных осей х y изготовлены винты диаметром 8мм с резьбой. Для вертикальной оси z применялся винт с резьбой диаметром 6мм. В качестве шагового двигателя используются приводы от старых принтеров. По одному приводу на каждую ось.

3. К плоскости шпилька крепиться посредством металлического уголка.

Вал двигателя соединяется со шпилькой через гибкую муфту. Все три оси крепятся к основанию через раму из ДСП. В данной конструкции фрезер будет двигаться только в вертикальной плоскости, а перемещение детали осуществляется за счет горизонтального перемещения платформы.

4. Электронный блок состоит из контроллера и драйвера. Контроллер выполнен на советских микросхемах К155ТМ7, для данного случая использовалось три штуки.

От каждой микросхемы провода идут к драйверу каждого из трех двигателей. Драйвер выполнен на транзисторе. В раскачке используется КТ 315, транзисторы КТ 814, КТ 815. От этих транзисторов электрический сигнал поступает на обмотку электрического привода.

При нормальном рабочем напряжении двигатели могут перегреваться из-за отсутствия в электронном блоке шин. Для предотвращения этого, для каждого двигателя нужно использовать компьютерный кулер.

Видео: простой ЧПУ-станок своими руками для начинающих.

Электронная начинка

Тут варианта два:

  1. Вы вооружаетесь паяльником, флюсом, припоем, лупой, и разбираетесь в микросхемах из принтера. Найдите управляющие платы принтера 12F675 и LВ1745. Работайте с ними, создав плату управления чпу. Прикрепить их нужно будет сзади чпу станка, под блоком питания (его тоже берем от многострадального принтера).
  2. Используйте заводской контроллер чпу станка. Навскидку – пятиосевой чпу контроллер. Самодельная электроника – чудно, однако китайцы сильно демпингуют с ценами. Так что легким кликом мышки заказываем чпу у них, ибо в России такой девайс чпу не купишь. Чпу контроллер 5 Axis СNC Breakout Board дает возможность подключения 3-х входов концевых двигателей, кнопочку отключения, автоматизированное управление дремелем и целых 5 драйверов под управление шаговым двигателем самодельного станка.

Питается этот чпу от USB-шнура. В самодельном варианте чпу запитывать плату управления на основе микросхем принтера нужно от блока питания станка чпу.

Шаговый двигатель для самодельного станка с чпу придется выбирать мощностью до 35 вольт. При других мощностях контроллер чпу рискует перегореть.

Блок питания снимите с принтера. Соедините проводкой блок питания, тумблер включения и выключения, контроллер чпу и дремель.

К плате управления станком подведите провод от лэптопа/ПК. Иначе, как вы будете загружать в станок задания. Кстати, о заданиях: качайте программу Math3 для рисования эскизов. Для непрофессионалов промышленного дизайна сойдет CorelDraw.

Резать самодельным станком чпу можно фанеру (до 15 мм), текстолит до 3 мм, пластик, дерево. Изделия получатся не более 30-32 см в длину.

Расположив движущиеся механизмы, перемещающие головку в CD/DVD приводе, под углом в 90 мы получаем XY-платформу с очень маленькой строительной областью, но с очень большой точностью позиционирования
Использование позиционирования лазерной головки от механизма CD привода для строительства высокоточной XY платформы - не новая идея: builders.reprap.org/2010/08/selective-laser-sintering-part-8.html

Шаг 5: Сборка X-Y платформы из Б/Ушных CD приводов



Сперва собираем стопку старых приводов. Открываем лоток с помощью скрепки. Возможно вам придётся перебрать несколько приводов прежде чем вы найдёте с шаговым двигателем. По крайней мере половина из тех что мы разобрали имели двигатель постоянного тока. Если кто-то знает как по виду отличить их между собой, то сообщите нам об этом.


Их легко отличить друг от друга разобрав привод: DC имеют два провода, а Stepper 4 и короткий шлейф.


В отличие от постоянного тока, шаговые двигатели предназначены для перемещения на определенное число шагов, где каждый шаг представляет собой часть полного оборота. Это делает удобным для высокоточного позиционирования, без необходимости создания системы обратной связи, проверяющей позицию нахождения головки. Например, 3D принтеры обычно используют шаговые двигатели для позиционирования печатающей головки.


После онлайн-проверки некоторых серийных номеров, мы наткнулись на хорошо документированный биполярный шаговый двигатель, помеченный как PL15S-020. Остальные найденные двигатели очень похожи на него, так что вероятно они имеют одинаковые параметры.


Технические данные: robocup.idi.ntnu.no/wiki/images/c/c6/PL15S020.pdf

Данный шаговый двигатель делает 20 шагов на оборот (не много, но достаточно), а ходовой винт имеет шаг 3 мм за один оборот. Таким образом, каждый шаг равен 150 мкм перемещения лазерной головки - не плохо!
На Arduino.cc сайт мы нашли схемы для биполярных шаговых двигателей, а также пример кода для их управления. Мы заказали несколько SN754410NE H-мостов для реализации схемы, показанной на последней картинке.

Старый CD / DVD приводы имеют множество других интересных комплектующих! В том числе, лоток механизма открытия / закрытия, содержащий двигатель постоянного тока с низкоскоростной передаче, двигатель шпинделя, который вращает CD, имеет как правило, высокопроизводительный бесщеточный двигатель постоянного тока, который можно использовать в игрушечных самолетах и вертолетох. Плюс, куча переключателей, потенциометры, чёртовы лазеры, и даже соленоиды! В общем, извлеките всё!!!

Шаг 6: Соберите всё вместе



Материалы:
- Два механизма перемещения лазерной головки с шаговыми двигателями (желательно одинаковые) из старых приводов. Стоимость: несколько долларов за штуку.
- Один InkShield комплект, с картриджем и держателем картриджа. Стоимость: $ 57
- Дополнительно: дополнительный HP C6602 струйный картридж. Стоимость: 17 $
- Arduino Uno. Стоимость: $ 30
- Два SN754410NE H-Bridge Motor. Стоимость: $ 5
- Комплект для прототипирования Arduino и / или крошечная макетная плата. Стоимость: $ 4-21
- Провода, винты, стойки, корпуса. Стоимость: от бесплатно до $ $ $, в зависимости от воображения.




Общие затраты на производство составили около 150$, включая стоимость доставки и обработки деталей. Выше на фотографии показаны две разные модели. Вторая версия обладает верхней пластиной из качественного акрила и большим внутренним пространством.














Механизм перемещения CD привода, находящийся внизу, перемещает синюю пластину на которой вы что либо печатаете (например, пластину агарозы). Верхний механизм привода, установленый под прямым углом, перемещает струйную печатающую головку. Мы использовали Shapelock и некоторые винты для крепления нижней платформы к лазерной головке, и крепления держателя картриджа к верхней головке лазера. Электроника состоит из Arduino Uno в нижней части, белого InkShield (подключенного к струйному держателю картриджа с хорошим белым ленточным кабелем), и протоплаты с шаговыми двигателями наверху.








Бумажные полоски, из бумаги в клеточку, на нижней и верхней платформах позволяют нам отслеживать положение по X и Y осям. Общая площадь печати составляет около 1,5 дюйма в обоих направлениях, с разрешением 150 мкм за один шаг. Следует отметить, что разрешение шаговых двигателей похоже на разрешение печатающей головки: 96 точек на дюйм 265 микрон шаг, но точки напечатанных печатающей головки четко разделены - больше как 150-200 микрон.





Шаг 7: Успех



Это наш первый по-настоящему-рабочий Биопринтер . Мы заправили картридж жидкой культуры кишечной палочки + pGLO. Слегка модифицировали «I <3 InkShield» DEMO Arduino, которое шло с InkShield, и напечатали пару строк «I <3 BioCurious» снова и снова на агаровой пластине. Агара была заполнена почти до самого верха, чтобы свести к минимуму расстояние печати.
Как вы можете видеть, печать живыми клетками E.coli работает отлично! Мы, вероятно, дали колонии бактерий развиваться дольше чем нужно, так что буквы немного расплываются. Мы получили распыление небольших колоний по углам клетки - вероятно, из-за некоторого распыления от струйной головки. Мы можем улучшить качество регулировкой вязкости или плотности клеток культуры, загружаемых в картридж.
Но в целом, не плохо для первого раза!
После печати мы дезинфицировали поверхность и внутренность картриджа отбеливателем, а потом пропустили немного отбеливателя через головку. После чего промыли всё дистилированной водой.
Вероятно, было бы хорошей идеей, вложиться в ультразвуковой очиститель ювелирных изделий , который может разрушать в том числе и органические вещества в самых труднодоступных местах.

Шаг 8: Полученный урок и планы на будущее

Мы обратились к этому проекту с практически нулевым опытом работы с Биопечатью, шаговыми двигателями, струйными картриджами, и даже программирования Arduino! Поэтому, естественно, не все наши действия были оптимальными. Вот некоторые вещи, которые мы могли бы сделать иначе в следующий раз:

Изучая работу шаговых двигателей мы получили действительно ценный опыт, но мы могли сэкономить кучу времени и усилий, адаптируя некоторые из RAMPS (RepRap Arduino MEGA Pololu Shield) технологий, которая уже была хорошо развита именно с этой целью в сообществе 3D-печати. В частности, шаговый двигатель Pololu уже имел встроенные микрошаговые возможности.

Строительство собственной XY-платформы - это здорово! Но мы используем эти шаговые двигатели для того, для чего они никогда не были предназначены, что начинает себя проявлять. Мы уже получаем некоторые проблемы с иногда пропускающей нижней ступенью, по-видимому, из-за частых ручных сбросов, изнашивающих пластиковые детали. Было достаточно легко купить новые шаговые двигатели, чтобы держать их, добавить немного микропереключателей для конечных остановок, и код функции сброса позиции в программном обеспечении.

Как только вы начинаете поиск новых шаговых двигателей и RAMPS электроники, возникает вопрос почему бы не начать сразу с 3D-принтеров вместо этого? Если мы устали от нашей текущей версии биопринтера, то, наверное, из-за выбранного направления. Стоимость, скорее всего, увеличится на порядок и так, хотя…

Наличие одной печатающей головки имеет свои ограничения. Если бы мы действительно хотели заняться какой-то тканевой инженерией, мы хотели бы иметь возможность печати нескольких типов клеток. Мы могли бы потенциально положить два струйных картриджа друг к другу. Решением Больших Мальчиков в этой области является использование шприцевых насосов. Представьте себе, что имея несколько шприцевых насосов рядом с принтером, каждый из которых подаёт свой материал на печать через тонкую трубку, а иглы установлены на печатающую головку. Следите за обновлениями…

Теперь слон в посудной лавке… Что, черт возьми, вы делаете с вашим собственным биопринтером?! Я не думаю, что BioCurious будет когда-либо конкурировать с такими компаниями как Organovo с точки зрения печати человеческих тканей или органов. С одной стороны, содержание клеток животных отнимают гораздо больше усилий. С растительными клетками намного легче работать! Не хочу, чтобы всё пошло прахом, так что следите за некоторыми из наших следующих руководств!

Между тем, вот несколько идей:

Печать градиентов питательных веществ и / или антибиотиков на слой клеток для изучения комбинаторных взаимодействий - или даже для выбора различных изолятов из образца из окружающей среды.
- Печать шаблонов факторов роста на слой эукариотических клеток для изучения клеточной дифференцировки.
- Печать двух или более видов микроорганизмов на различных расстояниях друг от друга, чтобы исследовать метаболические взаимодействий.
- Настройка вычислительной задачи как 2D модель строительства микроорганизма на агаровой пластине.
- Исследование систем реакция-диффузия
- Печать 3D структур с помощью повторной печати слоёв. Теперь вы можете рассмотреть возможность сделать все выше в 3D!
- Распечатать клетки в раствор альгината натрия, на поверхности пропитанной хлористым кальцием, для создания гелевых 3D структур (по аналогии с процессом spherification в молекулярной гастрономии)

Есть ещё идеи? Оставьте их в комментариях!

Шаг 9: Добавлено: Так что вы хотите сделать для реальной науки?

Биопринтер, показанный здесь, очевидно, всего лишь прототип. Но так как у нас были очень серьезные запросы об использовании этого в академических лабораториях, вот некоторые рекомендации:

Группа Дельфин Дин в университете Клемсон работает на Bioprinting с использованием модифицированного HP DeskJet 500. Определенно посмотрите их видео на JoVE on Creating Transient Cell Membrane Pores Using a Standard Inkjet Printer! Множество информации, о том как иметь дело со с струйными принтер, использующимися в качестве лабораторного оборудования, как очистить картриджи, готовить соответствующие клеточные суспензии, и некоторые интригующие не 3D приложения для печати.

Мы еще не получили удовлетворительных доказательств того, что картриджи HP C6602 могут печатать эукариотические клетки. Мы считаем, что скорее всего это связано с засорением печатающей головки продуктами распада клеток. Мы будем держать вас в курсе по поводу использования ультразвуковых установок для очистки…

  • старое железо
  • Добавить метки

    Довольно часто среди владельцев плохо работающей или уже неисправной оргтехники всплывает вопрос о том, что можно сделать из старого принтера. Конечно, самый простой способ решения данной задачи заключается в отправке использованного струйника или лазерного принтера на . Но если у вас есть свободное время и некоторое желание, то из принтера можно сделать станок ЧПУ, т.е. оборудование с числовым программным управлением, которое нашло широкое применение для решения как любительских, так и профессиональных задач. Узнать об этом более подробно вы можете ниже, но для начала рассмотрим вопрос о том, что можно извлечь из старого печатающего устройства.

    Извлекаем будущие запчасти

    Итак, если ваш принтер (будь то струйный или лазерный) уже вышел из строя или его эксплуатационный срок подходит к концу, то не спешите его выбрасывать. Дело в том, что старую оргтехнику лучше всего разобрать на запчасти, которые в дальнейшем можно использовать для ремонта новых принтеров. Лучше всего для разбора подходят многофункциональные устройства и девайсы, использующие матричную технологию печати, т.к. из них можно достать много чего полезного для тех, кто желает сделать станок ЧПУ собственными руками.

    • В первую очередь разберите старый девайс на части, причем все гаечки, винтики и болтики могут в дальнейшем оказаться необходимыми, поэтому не выкидывайте их, а сложите в какую-нибудь коробочку и уберите в сторону. Тем более нередко многим приходится сталкиваться с ситуацией, когда под рукой нет нужной гаечки.
    • Одной из самых ценных деталей в любом печатающем девайсе является стальная каленая направляющая. Особенно это касается принтеров старых моделей, направляющие которых очень тяжело согнуть. А вот в некоторых 3D-принтерах нередко экономят именно на этих деталях, в результате чего направляющие в них могут сгибаться даже под давлением натягивающегося ремня приводного типа. Качественные и надежные направляющие из стали отлично подходят для станков, поэтому смело извлеките деталь подобного рода из своего девайса.
    • Вместе с вышеназванной деталью идет и т.н. узел скольжения головки устройства. У принтеров струйных моделей подобная деталь выполнена из пластика, в результате чего она подойдет только для не нагруженных осей ЧПУ граверов – обязательно учтите это! Что касается старых девайсов матричного типа, то в их узле находится втулка из бронзы – деталь такого типа можно смело использовать на самодельном оборудовании с числовым программным управлением, которое будет использоваться для обработки пластмассы и цветмета.
    • Еще одной важной деталью, которой можно воспользоваться для изготовления станка является зубчатый ремень привода. Стоит отметить, что деталь подобного рода имеется и в старом копире, и лазерном МФУ.
    • Кроме того, обязательно извлеките шаговые двигатели, которые применяются для передвижения головки устройства и движения бумаги. На матричном девайсе, как правило, установлен более мощный шаговый двигатель, чем на принтерах другого типа. Из МФУ, использующего лазерную печать можно вытащить шаговик, который вполне подойдет для производства фрезера с числовым программным управлением, который будет использовать в бытовых условиях.
  • Вместе с шаговиком не забудьте извлечь также контроллер, который осуществляет управлением им.
  • Еще одним отличным устройством, которое можно использовать в качестве запчасти являются концевые выключатели. В печатающей оргтехнике они предназначены для того, чтобы осуществлять контроль над тем, есть ли в устройстве бумага или ее там нет. Подобные выключатели делятся на устройства автоматического и механического типа.
  • Собираем станок

    В качестве основы станка используйте принтер — отличным вариантом является матричный девайс. Двигатели от подобной оргтехники можно установить абсолютно самостоятельно, к тому же они являются долговечными и малошумными. Помимо этого, обзаведитесь всеми необходимыми инструментами и мелкими деталями в виде саморезов, подшипников, дюралевых уголков, болтов и строительных шпилек. Среди инструментов вам понадобятся бокорезы, напильник, тиски, электрическая дрель, плоскогубцы, отвертка и ножовка.

    • На первом этапе возьмите и выпилите из фанеры два куска квадратной формы 370×370 мм, для боковых стенок, один 90×340 мм для передней и 340×370 мм для задней стенки.
    • Стенки для будущего станка необходимо скрепить, воспользовавшись саморезами. Для этого заранее сделайте отверстия с помощью дрели на расстоянии в 6 мм до края.
    • В качестве направляющих по Y-оси вам следует использовать дюралевые уголки. Сделайте шпунт 2 мм, чтобы прикрепить данные уголки к боковым стенкам корпуса станка на расстоянии в 3 см от его дна. Прикручивать уголки необходимо через центральную поверхность, прибегнув к помощи саморезов.
    • Для изготовления рабочей поверхности следует воспользоваться уголками длиной в 14 см. На болты снизу нужно закрепить один подшипник 608.
    • Проделайте выход для двигателя оси Y примерно в 5 см от дна. Также просверлите отверстие в передней стенке диаметром 7 мм, чтобы туда можно было просунуть подшипник опоры винта хода.
    • Что касается непосредственно винта хода, то сделать его можно из шпильки строительного типа. С мотором он будет взаимодействовать с помощью муфты. Последнюю можно сделать абсолютно самостоятельно.
    • Проделайте в гайке М8 отверстия, поперечник которых должен составлять 2.5 мм.
    • Для изготовления оси X необходимо воспользоваться стальными направляющими, найти которые можно в корпусе старого принтера. Оттуда же вытащите и каретки, которые будут надеваться на оси.
    • Основание Z-оси необходимо выполнить из такого материала, как фанера No6. Элементы фанеры зафиксируйте друг с другом при помощи ПВА-клея. Сделайте еще одну ходовую гайку.
    • Установите в станке с ЧПУ вместо шпинделя дремель, который будет иметь держатель, выполненный из кронштейна для доски. Проделайте снизу отверстие, поперечник которого должен быть равен 19 мм, чтобы туда можно было просунуть дремель. Далее следует фиксация кронштейна на саморезе к основанию оси Z.
    • Для изготовления опор, предназначенных для оси Z необходимо использовать фанеру с основанием 15 на 9 см. Верхняя и нижняя ее стороны должны быть равны 5×9 см. Под направляющие также нужно будет просверлить соответствующие выходы.
    • На последнем этапе вам нужно будет выполнить сборку оси Z с кронштейном дремеля, а также заняться его монтажом в корпус практического готового станка.

    В целом, как видите, старый принтер может стать отличной основой для изготовления станка с ЧПУ. Конечно, если вашего мастерства и навыков для создания подобного оборудования не хватает, то лучше разберите старый девайс на комплектующие, которые могут понадобиться вам в будущем для ремонта нового принтера.

    Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png