Любая информация (числа, команды, алфавитно-цифровые записи и т. п.) представляется в компьютере в виде двоичных кодов. Отдельные элементы двоичного кода, принимающие значения 0 или 1, называются разрядами или битами.

В старых компьютерах, рассчитанных на вычислительные задачи, минимальной единицей информации, доступной для обработки, была ячейка. Количество разрядов в ячейке было ориентировано на представление чисел и было различным в разных компьютерах (24 бита, 48 бит и т.д.). Однако такой большой размер ячеек был неудобен для представления символов, поскольку для представления символьных данных достаточно 5-8 байт. Это дает возможность представить от 32 до 256 символов.

Поэтому минимальной единицей данных, обрабатываемой в современном компьютере, является байт, состоящий из восьми двоичных разрядов (битов). Байт впервые был введен в компьютерах серии IBM/360 и используется для представления как чисел, так и символов. Каждый байт, расположенный в памяти компьютера, имеет свой адрес, который определяет его местонахождение и задается соответствующим кодом. Адреса памяти начинаются с нуля для первого байта и последовательно возрастают на единицу для каждого последующего.

Производными единицами от байта являются килобайт (2 10 байт) – сокращение Кбайт или Кб, мегабайт (2 20 байт) – сокращение Мбайт или Мб, гигабайт (2 30 байт) – сокращение Гбайт или Гб, терабайт (2 40 байт) – сокращение Тбайт или Тб и петабайт (2 50 байт) – сокращение Пбайт или Пб.

Для представления чисел используются один или несколько последовательно расположенных байтов. Группы байтов образуют двоичные слова, которые, в свою очередь, могут быть как фиксированной, так и переменной длины.

Форматы данных фиксированной длины (полуслово, слово и двойное слово) состоят соответственно из одного, двух или четырех последовательно расположенных байтов. Обращение к этим данным производится по адресу крайнего левого байта формата, который для слова должен быть кратен числу 2, а для двойного слова – числу 4.

Формат данных переменной длины состоит из группы последовательно расположенных байтов от 1 до 256. Адресация таких данных производится, как и в форматах фиксированной длины, по адресу самого левого байта.

В зависимости от характера информации используются форматы представления данных как фиксированной, так и переменной длины. Так, в форматах данных фиксированной длины обычно представляются двоичные числа, команды и некоторые логические данные, а в форматах данных переменной длины – десятичные числа, алфавитно-цифровая и некоторая логическая информация.

В современных компьютерах применяются две формы представления чисел: с фиксированной точкой (запятой) и с плавающей точкой (запятой). Эти формы, кроме того, называются соответственно естественной и полулогарифмической.


При представлении чисел с фиксированной точкой положение точки фиксируется в определенном месте относительно разрядов числа. В первых компьютерах точка фиксировалась перед старшим разрядом числа, поэтому представленные числа по абсолютной величине были меньше единицы. В современных компьютерах точку фиксируют справа от самого младшего разряда и поэтому могут быть представлены только целые числа. При этом используются два варианта представления целых чисел: со знаком и без знака.

Для числа со знаком крайний слева разряд отводится под знак числа. В этом разряде записывается нуль для положительных чисел и единица – для отрицательных чисел. Числа без знака занимают все разряды числа, т.е. числа могут быть только положительными. Нумерация разрядов числа обычно ведется справа налево.

В компьютерах числа с фиксированной точкой имеют три основных формата – один байт (полуслово), 16-разрядное слово (короткий формат) и 32-разрядное двойное слово (длинный формат).

Форматы представления данных в памяти ЭВМ. Машинные коды.

План.

1. Форматы представления данных в памяти ЭВМ.

a. Представление чисел в форме с фиксированной точкой

b. Представление чисел в форме с плавающей точкой

2. Машинные коды: прямой, обратный, дополнительный.

Форматы представления данных в памяти ЭВМ.

Для представления чисел (данных) в памяти ЭВМ выделяется оп­ределенное количество битов. В отличие от нумерации разрядов числа биты в байте нумеруются слева направо, начиная с 0. Каждый байт в памяти ЭВМ имеет свой порядковый номер, который называется абсолютным адресам байта . Байт является основной единицей хранения данных, это наименьшая адресуемая единица обмена информации в оперативной па­мяти ЭВМ, то есть минимальная единица обмена информации, имеющая адрес в памяти ЭВМ.

Последовательность нескольких смежных байтов образует поле данных . Количество байтов поля называется длиной поля , а адрес само­го левого байта поля - адресом поля . Обработка информации может вестись либо побайтно, либо полями данных (или форматом данных). Форматы данных показывают, как информация размещается в оперативной памяти и регистрах ЭВМ. Форматы данных различают по длине, типу данных и структуре, а каждое значение, содержащееся в байте может быть интерпретировано по разному:

– кодированное представление символа внешнего алфавита (при вводе и выводе данных);

– целым знаковым или беззнаковым числом (при внутреннем представлении чисел в памяти ЭВМ);

– частью команды или более сложной единицы данных и т.д.

В ЭВМ существуют следующие формы представления целых чисел: полуслово (байт), слово (два последовательных байта, пронумерованных слева направо от 0 до 15), двойное слово (4 байта).

Если в указанных форматах размещаются числа, то веса их разрядов возрастают справа налево.

В ЭВМ для представления чисел используется естественная (представление числа с фиксированной точкой) и полулогарифмическая (представление числа с плавающей точкой) формы.

Представление чисел в форме с фиксированной точкой.

В используемых представлениях чисел “запятая” или “десятичная точка” - это условный символ, предназначенный для разделения целой и дробной частей числа. Запятая имеет, следовательно, точный математический смысл, независимо от используемой системы счисления, и ее положение нисколько не меняет алгоритм вычислений или форму результата.

Если обрабатываемые числа имеют величину одного порядка, можно фиксировать позицию запятой или точки (такое представление называется представлением с фиксированной точкой). Тогда при обработке чисел в машине нет необходимости учитывать положение (представлять) десятичной точки. И тогда ее положение на уровне программы считается одинаковым и учитывается только в результате.

Существует в основном 2 способа фиксирования десятичной точки:

1) точка располагается справа от младшей цифры числа, и мы имеем целые числа;

2) точка располагается слева от старшей цифры числа, и мы имеем дробные числа по абсолютному значению меньше единицы.

Целые положительные числа можно представлять непосредственно в двоичной системе счисления (двоичном коде). В такой форме представления легко реализуется на компьютере двоичная арифметика.

Если же нужны и отрицательные числа, то знак числа может быть закодирован отдельным битом (обычно это старший бит). Старший разряд является знаковым, если он содержит 1 , то число отрицательное , если 0 , то число положительное .

При шестнадцатиразрядной сетке мы имеем:

В общем случае диапазон представления целых чисел равен (n – число разрядов в формате):

– для беззнаковых 0 ≤ x ≤ 2 n -1 (при n=8 от 0 до 255)

– для знаковых -2 n -1 ≤ x ≤ +2 n -1 -1 (при n=8 от -128 до 127);

Существенным недостатком такого способа представления является ограниченный диапазон представления величин, что приводит к переполнению разрядной сетки при выходе за допустимые границы и искажению результата, например, если рассмотреть пяти разрядную знаковую сетку, то при сложении двух чисел +22 и +13 получим:

Представление чисел в форме с плавающей точкой.

Действительные числа в математике представляются конечными или бесконечными дробями. Однако в компьютере числа хранятся в регистрах и ячейках памяти, которые являются последовательностью байтов с ограниченным количеством разрядов. Следовательно, бесконечные или очень длинные числа усекаются до некоторой длины и в компьютерном представлении выступают как приближенные.

Для представления действительных чисел, как очень маленьких, так и очень больших, удобно использовать форму записи чисел в виде произведения:

А = ± М·n ± p

где n - основание системы счисления;

M – мантисса;

р – целое число, называемое порядком (определяет местоположение десятичной точки в числе).

Такой способ записи чисел называется представлением числа с плавающей точкой .

Пример: -245,62=-0,24565·10 3 , 0,00123=0,123·10 -2 =1,23·10 -3 =12,3·10 -4

Очевидно, такое представление не однозначно.

Если мантисса заключена между n -1 и 1 (т.е. 1/n £ |M| <1), то представление числа становится однозначным, а такая форма назы­вается нормализованной .

Пример : для десятичной системы счисления - 0,1 < |m| < 1 (мантисса - число меньше 1, и первая цифра после запятой отлична от нуля, т.е. значащая).

Действительные числа в компьютерах различных типов записываются по-разному, тем не менее, существует несколько международных стандартных форматов, различающихся по точности, но имею­щих одинаковую структуру. Для основанного на стандарте IEEE – 754 (определяет представление чисел с одинарной точностью (float ) и с двойной точностью (double )) представление вещественного числа в ЭВМ используется m+p+1 бит, распределяемые следующим образом: один разряд (S)- используется для знака мантиссы, p – разрядов определяют порядок, m разрядов определяют абсолютную величину мантиссы. Для записи числа в формате с плавающей запятой одинарной точности требуется тридцатидвухбитовое слово. Для записи чисел с двойной точностью требуется шестидесятичетырёхбитовое слово.

1 p-1 0 m-1 0
S Порядок Дробная часть М

Так как порядок может быть положительным или отрицатель­ным, нужно решить проблему его знака. Величина порядка представляется с избытком, т.е., вместо истинного значения порядка хранится число, называемое характеристикой (или смещенным порядком ).

Смещение требуется, чтобы не вводить в число еще один знак. Смещённый порядок всегда положительное число. Для одинарной точности смещение принято равным 127, а для двойной точности – 1023 (2 p -1 -1) . В десятичной мантиссе после запятой могут присутствовать цифры 1:9, а в двоичной - только 1. Поэтому для хранения единицы после двоичной запятой не выделяется отдельный бит в числе с плавающей запятой. Единица подразумевается, как и двоичная запятая . Кроме того, в формате чисел с плавающей запятой принято, что мантисса всегда больше 1. То есть диапазон значений мантиссы лежит в диапазоне от 1 до 2.

Примеры :

1) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

11000001 01001000 00000000 00000000

Разделим двоичное представление на знак (1 бит), порядок (8 бит) и мантиссу (23 бита):

1 10000010 10010000000000000000000

– Знаковый бит, равный 1 показывает, что число отрицательное.

– Экспонента 10000010 в десятичном виде соответствует числу 130. Скорректируем порядок: вычтем число 127 из 130, получим число 3.

– К мантиссе добавим слева скрытую единицу 1 ,100 1000 0000 0000 0000 0000, перенесем порядок от скрытой единицы вправо на полученную величину порядка: 1 100, 1000 0000 0000 0000 0000.

– И, наконец, определим десятичное число: 1100,1 2 = 12,5 10

– Окончательно имеем -12,5

2) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

01000011 00110100 00000000 00000000

– Знаковый бит, равный 0 показывает, что число положительное.

– Экспонента 10000110 в десятичном виде соответствует числу 134. Вычтя число 127 из 134, получим число 7.

– Теперь запишем мантиссу: 1 ,011 0100 0000 0000 0000 0000

– И, наконец, определим десятичное число: 10110100 2 =180 10

Поскольку под мантиссу и порядок отводится определенное число разрядов, соответственно m и p , то можно оценить диапазон чисел, которые можно представить в нормализованном виде в системе счисления с основанием n .

Если m=23 и p=8 (4 байта), то диапазон представленных чисел от 1,5·10 -45 до 3,4·10 +38 (обеспечивает точность с 7-8 значащими цифрами).

Если m=52 и p=11 (8 байт), то диапазон представленных чисел от 5,0·10 -324 до 1,7·10 +308 (обеспечивает точность с 15-16 значащими цифрами).

Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. Чем больше разрядов занимает поря­док, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в компьютере при заданном формате.

При выполнении операций с плавающей точкой возникает меньше проблем с переполнением разрядной сетки, чем для операций с фиксированной точкой. Однако операции с плавающей точкой более сложные, так как они требуют нормализации и денормализации мантисс.

Типы данных

Выделение диапазонов

Элементы рабочего листа

Компоненты экрана Excel

Окно приложения Excel

Окно документа Excel (окно Рабочей книги)

Основное рабочее пространство экрана – Рабочая книга, содержащая один или несколько Рабочих листов.

Рабочий лист – это электронная таблица.

Рабочая книга – совокупность Рабочих листов, размещенных в одном файле.

Строка заголовка

Строка меню (9 меню с основными командами работы);

Стандартная панель инструментов;

Панель форматирования;

Поле имени; - Строка формул;

Полосы прокрутки;

Ярлычки рабочих листов; - Кнопки прокрутки ярлычков.

Строка состояния


Рабочий лист состоит из столбцов и строк.

Заголовки столбцов: A, B, C . . . AA, AB, AC . . . IV à всего 256 столбцов

Заголовки строк: 1, 2, 3 . . . à всего 65 536 строк.

Пересечения столбцов и строк называются ячейками (> 16 млн.).

Каждая ячейка имеет свой адрес, который определяется соответствующими столбцом и строкой (A1, B3, F9 …).

Если ячейку сделать активной, то она выделяется жирной рамкой и ее адрес помещается в Поле имени.

Только в активной ячейке можно производить ввод или редактирование данных или формул .

Выделение столбцов

Выделение строк

Выделение рабочего листа

Выделение смежных ячеек (клавиша )

Выделение несмежных ячеек (клавиша )

Использование «Поля имени»

Для выбора ячейки внутри выделенного диапазона нельзя пользоваться мышью или клавишами управления курсором. Это приведет к отмене выделения диапазона.

Для перемещения внутри выделенного диапазона вперед от ячейки к ячейке надо использовать клавиши:

- перемещение по рядам;

- перемещение по столбцам.

Для перемещения в обратном направлении надо использовать сочетание клавиш

+ или +


Текст – любая последовательность символов, которые Excel не может
распознать как число, дату или время
(длина текстового значения ячейки не может быть больше 255 символов).
(Пример: 252003, Киев).

Число – это числовая константа (Пример: 5; 23; 4,07 -43)
Числа могут содержать только следующие символы:

Существуют следующие форматы представления чисел :

Целые числа (123);

Десятичные дроби (123,5);

Простые дроби (1/5);

Числа в степенной форме (123 Е+4).

Если перед числом поставить минус или заключить его в скобки, Excel будет считать это число отрицательным.

Если число не помещается в ячейке, то оно будет отображаться в виде символов ######## или будет преобразовано в экспоненциальный формат
(напр.: 2 Е+08 à 2 умножить на 10 в степени 8)

Дата и время – вещественное число, представляющее собой количество дней от начала ХХ века.

Дата кодируется в целой части этого числа, а время – в дробной части.

В Excel дата и время считаются числовыми значениями, с которыми можно производить вычисления. Самая ранняя дата, которую может распознать Excel – 1 января 1900 года. Ей присвоен порядковый номер 1 ; 2 января 1900 года – 2 и т.д.

Время Excel понимает как дробную часть дня.

Вводить дату и время можно в любом из допустимых форматов.

В строке формул дата отображается в формате типа 1.06.1997

Формула – выражение начинающееся со знака “= “ (равно) и состоящее из аргументов и операторов.

Формат Описание Хранимое значение Выводимое значение
Общий Общий формат представления данных. Никакого форматирования не производится, данные отображаются в том же виде, в каком были введены. Ячейке автоматически присваивается формат вводимых данных. 123 АбВг 123 АбВг
Числовой Формат представления целых чисел и десятичных дробей. Можно установить количество отображаемых знаков после запятой, а также наличие и вид разделителей. 1234,56 1234,56 1 234,6 1234,00 1.234
Денежный Данные в столбце выравниваются по десятичной точке. Можно установить количество знаков после запятой и символ валюты. 123р. 123грн. $123
Финансовый Аналогично формату «денежный» но выравниваются не только десятичные точки, но также знак числа и символ валюты. 123р.
Дата Используются все употребляемые форматы представления даты и даты вместе со временем. 10.01.97 1-окт-97 Октябрь 1, 1997
Время Использует все употребляемые форматы представления времени. 0,3004 35704,3004 7:12 7:12 АМ 10.01.97 7:12:35
Процентный Представление числа в сотых долях (процентном формате) 0,123 12,3%
Дробный Простая дробь. Можно выбрать требуемую точность 1,23 1 20/87 1 4/16 1 23/100
Экспоненци-альный Все числа представляются в степенной (экспоненциальной) форме. 123 000 123Е+3 1,23Е+5
Текстовый Данные сохраняются точно в том виде, в котором были введены. F,Du F,Du
Дополнительный Телефонные номера и др. 555-5555
Все форматы Форматы, определяемые пользователем

Ввод, редактирование и форматирование данных

глава III. Мультимедийный документ и форматы представления его элементов

Данная глава посвящена рассмотрению состава мультимедийного документа и представления отдельных его компонентов. В частности, описываются различные варианты представления текстовой и графической информации. Указаны наиболее популярные графические форматы, используемые в электронных изданиях. Описаны возможные форматы представления аудиофайлов, особенности кодирования и сжатия соответствующих данных. В заключение анализируются форматы анимационных файлов и цифрового видео и варианты ком-прессии соответствующих данных.

Мультимедиа и ее роль в современных информационных технологиях

Сейчас - это полноценное объединение компьютерных и других информационных технологий: видео, аудио, фото, кино, телекоммуникаций (телефон, телевидение, радиосвязь), не говоря уже о тексте и графике, как статической, так и динамической (анимационной). С помощью приложений мультимедиа текст, графика, аудио- и видеоинформация объединяются в единое информационное поле, подобно тому как в кинофильме объединяются звук и движущееся изображение. Однако в отличие от кинофильма мультимедиа представляет собой интерактивную среду, т. е. пользователь может управлять процессом представления мультимедиа с помощью различных средств ввода, таких как клавиатура и манипулятор мышь.

Успешное сращивание телекоммуникационных сетей с компьютерами, стремительный рост их качества и количества преобразует вещательные сети в интерактивные, создает единое мировое информационное мультимедиа-пространство. Важнейшей частью этого пространства является сеть Internet и особенно, ее гипермедиа-система World Wide Web. Распространение мультимедиа-технологий (в сочетании с развитием электронной коммерции) в дальнейшем наложит жесткие ограничения на конкурентоспособность издательско-полиграфических фирм, ориентированных на широкий спрос. Преимущества в продаже даже самой высококачественной продукции получат те, кто быстрее и эффективней освоил электронные способы коммерции и обслуживания.

Использование мультимедиа в учебных пособиях дополняет аналитические (вычислительные и логические) и навигационные возможности компьютеров способностью к образному, синтетическому описанию изучаемого предмета или объекта. Многочисленные исследования показали, что обучаемый с первого раза запоминает лишь четверть услышанного и треть увиденного, при комбинированном воздействии на слух и зрение запоминается приблизительно половина информации, а при вовлечении обучаемого еще и в активные действия (например, при использовании интерактивных мультимедиа-технологий) доля усвоенного достигает 75%. Мультимедиа, особенно интерактивное, активизирует индивидуальные, личностные мотивы усвоения материала студентом, в том числе:

    целевой (для меня важно и необходимо знать этот материал и уметь выполнять такую работу);

    исследовательский (работая с учебным материалом, я не только узнаю что-то новое, но и чувствую себя активным участником процесса познания, сам участвую в творческом процессе);

    эмоционально-эстетический (в процессе изучения материала я испытываю удовольствие как от получаемых результатов, так и от самого процесса изучения этого материала);

    игровой (эта форма обучения интересна, начав изучать материал, я не могу остановиться, мне интересно и хочется довести до конца изучение материала);

    инициационный (предполагает органичное сочетание в мультимедийном учебнике информационной и эстетически-эмоциональной глубины).

По уровню творческих мотивов и степени воздействия на человека мультимедиа следует отнести к новому виду синтетического искусства, отличительной особенностью которого является высокая информативность и интерактивность. Поэтому в будущем следует ожидать создания теории педагогики мультимедиа, учитывающей психофизиологические и эстетические законы восприятия и усвоения большого объема информации. Не исключая традиционной формы обучения, предполагающей творческое и воспитательное общение с преподавателем, мультимедиа создает новые позитивные факторы, в частности, значительный рост эффективности обучения за счет повышения качества самостоятельной работы студента с электронными учебными материалами.

Специалисты считают, что самую сложную систему автоматизированного управления было бы гораздо легче освоить в том случае, если она реализована на основе стандартного мультимедиа-интерфейса. В будущем, видимо, будут созданы эвристические алгоритмы мультимедиа, которые позволят не только человеку адаптироваться в компьютерной системе, но и компьютеру адаптироваться к уровню восприятия человека, т. е. сделать процесс адаптации двусторонним.

Форматы представления текстовых блоков электронного издания

Еще несколько лет тому назад ответ на поставленный в заголовке данного параграфа вопрос был предельно прост: текстовые блоки должны быть в гипертекстовом (HTML) формате или же в формате PDF, так как только эти форматы поддерживали возможность включения в электронное издание мультимедийных компонентов. В настоящее время практически все верстальные пакеты поддерживают не только преобразование подготовленного издания в формат РОР (или HTML), ной подключение к изданию мультимедиа-компонентов. В частности, в программном пакете PageMaker фирмы Adobe предусмотрена в секции меню «Сервис» команда «Дополнения /QuickTime Media» (рис. 3.1
), которая обеспечивает подключение к электронному документу объекта в универсальном формате QuickTime, который позволяет работать с любой времязависимой информацией, начиная от аудиоданных и кончая фильмами с несколькими видео-и аудиодорожками.

В широко распространенном в нашей стране текстовом редакторе Microsoft Word, начиная с версии 1997 г., предусмотрена возможность включения в состав документа не только анимации в формате GIF, но также и видеофильма в формате QuickTime, видеоклипа в формате AVI, клипа мультимедиа. На рис. 3.2
показано диалоговое окно для команды «Вставка/Объект», которая иллюстрирует сделанное утверждение. Кроме того, принятый в этой версии редактора формат DOC стал в полной мере гипертекстовым, так как в нем появилась возможность включать в документ гипертекстовые ссылки как внутренние, для чего в документе делаются специальные закладки, так и внешние - по URL-адресу любого другого документа. В редакторе добавлена также возможность преобразования исходного документа в формат HTML, а также создания специальных HTML-форм. Часть этих возможностей представлена и усовершенствована в новой версии редактора - MS Word 2000.

Таким образом, наряду с форматом HTML и PDF (последний, строго говоря, хранит текст в графическом формате), текстовые блоки электронных изданий могут быть представлены в форматах DOC (MS Word), P65 (Adobe PageMaker) и многих др.

В том случае, когда электронное издание не содержит мультимедиа-компонентов, то оно может храниться в формате любого текстового редактора или верстального пакета; единственное дополнительное требование к текстовому редактору состоит в том, что он должен поддерживать графические форматы рисунков, если они включены в текст издания.

Для чисто текстовых изданий ограничений еще меньше. Их можно хранить и распространять в любом текстовом формате, используемом в современных персональных компьютерах. В частности, может использоваться форматТХТ (в том числе «простой текст» или plain text), гораздо более экономичный, чем формат DOC. Для кодирования любого символа такого текста используется всего один байт. Пример такой кодировки представляет American Standart Code for Information Interchange (ASCII) - Американский стандартный код для обмена информацией. Для языков на основе латиницы и кириллицы такое кодирование вполне удовлетворительно.

Однако для некоторых восточных языков, например китайского или японского, этот подход неприменим, так как разнообразие символов в этих языках многократно превышает 256 - предельное значение этого параметра в ASCII-стандарте. В последние годы все более прочные позиции приобретает стандарт Unicode, или ISO 10646, т. е. стандарт под номером 10646 Международной организации по стандартизации (International Organization for Standartization). В этом стандарте каждый символ кодируется уже 2 байтами, т. е. предельное разнообразие символов достигает значения 65536. Этот стандарт часто называют стандартом многоязыковой поддержки, так как он позволяет кодировать символы государственных языков всех стран нашей планеты.

Однако в ТХТ-формате электронное издание не удовлетворяет даже самым скромным эстетическим запросам, так как в нем нет возможности использования не только графики, но даже шрифтов различного начертания, заголовков и подзаголовков, примечаний и других элементов, которые в совокупности называют «разметкой текста» (markup).

Из языков разметки текста помимо HTML, рассмотренного в предыдущей главе, наибольшее распространение получили:

    TROFF, применяющийся при оформлении документации в рамках операционной системы UNIX и различных ее версий, включая LINUX;

    ТЕХ, который широко используется для подготовки изданий с большим количеством математических формул;

    SGML (Standart Generic Markup Language).

Исходная программа форматирования электронных документов в системе UNIX называлась ROFF (от Run OFF - тиражирование). TROFF означает Typesetting ROFF, т. е. форматирование текста для принтеров с высоким разрешением и фотонаборных устройств. Хотя область распространения этого языка и поддерживающих его программ постепенно сужается, в США он продолжает использоваться для создания электронных отчетов, которые могут одинаково успешно выводится на терминалах с низким разрешением и распечатываться с полиграфическим качеством.

Система верстки и язык ТЕХ был разработан хорошо известным среди программистов и математиков профессором Дональдом Кнутом для подготовки книг и пособий по математическим дисциплинам. ТЕХ работает на различных аппаратных и программных платформах. Его можно отыскать в сети Интернети бесплатно перенести паевой компьютер. Имеются и коммерческие версии этого продукта, в частности для платформы Macintosh фирмы Apple. Отметим, что помимо математических книг на этом языке издаются различные академические журналы, в том числе и в нашей стране.

Язык SGML реализует принцип логической разметки текста, который позволяет разграничить содержимое издания и его электронное представление. Именно этим принципом руководствовались специалисты фирмы

IBM, создавшие этот язык, который с 1986 г. получил статус международного стандарта. Кстати, HTML был создан именно на основе SGML. Основное достоинство языка SGML состоит в его универсальности независимости от программных средств для его интерпретации. Этот формат может быть конвертирован в форматы TROFF или ТЕХ. Язык изначально создан для производственных нужд, связанных с длительным хранением электронных документов большого объема, таких как описания крупных проектов или их документация.

Большинство из перечисленных текстовых форматов можно встретить в многочисленных «Электронных библиотеках», представленных в сети Интернет, о чем подробнее будет сказано в главе 8. Для ускорения загрузки таких изданий на компьютер пользователя они нередко представлены в архивированном виде, для чего чаще всего используются программы-архиваторы ARJ, ZIP и RAR, работающие в DOS"e, и WINZIP и WINRAR, предназначенные для работы в оболочке Windows.

Специальные языки разметки страниц в будущем будут активно развиваться. Одна из причин этого связана с автоматизацией извлечения информации из подготовленных электронных изданий. Такая операция обязательно производится для облегчения поиска информации, в частности, в сети Интернет. Для изданий, в производстве которых использованы принципы логической разметки и языки разметки страниц, многократно повышается эффективность поиска ключевых слов и выражений, адекватно отражающих содержание этих изданий.

Форматы представления графической информации

Без иллюстраций любое издание выглядит однообразно. Хорошо подобранная и рационально размещенная в издании графика не только улучшает дизайн издания, но и делает его значительно более информативным для читателя, помогает лучше передать его содержание и даже суть. Однако графика требует значительного информационного пространства для своего размещения, с чем связаны основные ограничения ее использования.

Известны два способа описания компьютерного изображения: точечный (растровый), при котором изображение формируется из отдельных точек, и векторный (контурный), где изображение состоит из отдельных объектов, ограниченных замкнутыми или незамкнутыми контурами, каждый из которых представляет собой сочетание отдельных отрезков прямых линий (векторов) и кривых (дуги окружностей, фрагменты параболических кривых и кубических сплайнов) линий. Каждый такой графический объект можно перемещать, масштабировать, вращать без потери качества изображения и независимо от любых других объектов.

Векторные файлы содержат математическое описание всех элементов изображения, которое используется программой визуализации для их отображения на экране монитора. Таким образом, сам процесс отображения информации требует определенных вычислительных мощностей для преобразования математического описания объектов в растровый формат монитора. Векторная графика характеризуется рядом положительных черт, к числу которых можно отнести следующие:

    Экономичность хранения изображений, т. е. сравнительно небольшие размеры графических файлов, хранящих изображение в векторном формате.

    Легкость трансформации и манипулирования отдельными графическими объектами (и всем изображением в целом).

    Максимальное использование разрешающей способности выводного устройства, с помощью которого осуществляется визуализация цифрового изображения, так как величина разрешения обычно в графическом файле непосредственно не задана.

    Простота интеграции с текстом, который состоит из отдельных символов, формируемых преимущественно контурным методов (например, элементы TrueType-шрифтов и шрифтовые объекты в формате PostScript).

Простейшие форматы векторного типа реализованы в электронных таблицах, используемых в пакетах Lotus 1-2-3 и Excel. Большинство же векторных форматов разработано для хранения чертежей, созданных программами САПР (Систем Автоматизированного Проектирования). В издательском деле и полиграфии к наиболее распространенным можно отнести формат PostScript, используемый для описания сверстанных страниц в фотонаборных автоматах и лазерных принтерах.

С точки зрения живописности и реалистичности изображения векторная графика имеет весьма ограниченные возможности, поэтому в издательском деле шире используется растровое представление. В случае применения векторной графики определенные трудности возникают и с автоматизацией ввода графического изображения в компьютер или оцифровкой изображения. Сканеры, цифровые фото- и видеокамеры хранят оцифрованное изображение в растровых форматах.

Точечная, или растровая, графика исторически стала применяться значительно раньше векторной. К ней можно отнести художественные изображения мозаичного типа: смальту, мозаику и даже вышивку. Таким образом, к ней относят изображения, полученные из мельчайших отдельных элементов, каждый из которых неделим и описывается постоянством тона на всем своем протяжении. Такие элементы принято называть пикселами (это понятие мы уже упоминали в главе 2). Каждый такой пиксел формально независим от соседних, т. е. может иметь различные характеристики: яркость, цветовой тон, насыщенность цвета и прочее.

К достоинствам точечной графики можно отнести следующие факторы:

    простота и легкость ввода (оцифровки) изображений;

    удобство технической реализации вывода информации (на монитор, лазерный или струйный принтер и т. д.);

    реалистичность изображения;

    возможность получения тонких живописных эффектов, таких как туман, тонкие цветовые переходы и нюансы цвета, перспектива изображения, размытость и нерезкость и пр.

Однако и недостатки точечной графики существенны. К основным из них относятся:

    необходимость точных установок параметров до начала создания графического изображения, в частности, задания количества точек на единицу длины изображения, размера изображения по каждой координате, а также глубины цвета - количества бит для цветового представления каждого отдельного пиксела;

    большой информационный объем получаемого графического файла, который определяется произведением трех величин: площади изображения, разрешающей способности и глубины цвета в согласованных единицах измерения, например, максимальное разрешение в пакете PhotoShop составляет 10000 пиксел/дюйм при максимальном значении 30000 пикселов по каждой координате, чему соответствуют размеры файлов до нескольких сотен Мб;

    при повороте и других трансформациях изображения составляющие его горизонтальные и вертикальные линии превращаются в ступенчатые, т. е. обязательно появляются искажения при трансформациях изображения.

Важной характеристикой любого изображения, в частности растрового, является глубина цвета. Самое простое изображение использует два уровня серого, т. е. черный и белый. На цветовое описание элемента такого изображения (пиксела) требуется лишь 1 бит. Следующий вариант использует множество уровней серого, обычно 256, в результате чего каждый элемент изображения кодируется 1 байтом. Цветные изображения также могут быть различных типов.

В некоторых графических файлах используют так называемые индексированные цвета. В этом случае количество цветовых оттенков обычно не превышает 256, причем все они хранятся в самом графическом файле в виде палитры цветовых оттенков и каждый возможный цветовой тон в изображении соответствует одному из элементов этой палитры. Общее разнообразие или глубина цвета равна, как и в предыдущем случае, 8 битам, или 1 байту. Кстати, индексированные цвета используются и в оболочке Windows в виде встроенной палитры цветов, с которой мы еще не раз встретимся в рамках данного учебника.

Наконец, так называемое полноцветное изображение (True color) чаще всего работаете RGB-цветовом пространстве и использует! байт на каждый из трех основных цветовых компонент (красная, зеленая и синяя), т. е. общая глубина цвета равна 24 битам, или 3 байтам. При таком представлении количество различных цветовых оттенков превышает 16 миллионов. В некоторых графических файлах используется даже 48-битная глубина цвета. В этом случае каждый основной цвет представляется 16 битами или 65576 различными уровнями, а общее число различных цветовых оттенков выражается фантастической величиной, превышающей 2,6-10 14 .

Для электронных изданий, зачастую распространяемых по сетям, информационный объем представляет собой очень важную характеристику. Понятно поэтому стремление использовать векторные форматы или же специальные растровые форматы с внутренним сжатием информации для представления графических файлов. Кратко остановимся на методах и средствах сжатия изображений.

Существует две группы методов сжатия изображений: без потерь и с потерями. В первом случае при распаковке сжатого графического файла полностью восстанавливается вся исходная информация, в том числе, цветовой оттенок каждого отдельного пиксела. Во втором же - часть информации теряется, т. е. изображение становится несколько менее качественным, некоторые мелкие его детали утрачиваются. Во многих случаях это вполне допустимо, так как человеческий глаз различает, в лучшем случае, лишь несколько тысяч оттенков цвета и не реагирует на мел кие детали изображения (разрешение глаза близко к одной угловой минуте, откуда при нормальном расстоянии до изображения в 25-30 см можно подсчитать величину линейного разрешения глаза, которая близка к 90-100 мкм).

Большинство методов сжатия без потерь основано на варианте группового кодирования (Run-Length Encoding - RLE). Идея такого метода заключается в том, что последовательности повторяющихся значений заменяются на пару чисел, первое из которых дает количество повторяющихся

значений, а второе - само это значение. В описаниях многоцветных изображений очень часто соседние пикселы характеризуются одними и теми же тоновыми и цветовыми характеристиками, что и обеспечивает эффективность такого сжатия .

Схема сжатия без потерь Лемпела-Зива-Велча (LZW) в последние годы используется все шире и шире. Она позволяет работать сданными любого типа, обеспечивая достаточно быстрое сжатие и распаковку данных. Этот алгоритм называют алгоритмом подстановок или алгоритмом сжатия словарного типа. На основе входного потока данных алгоритм формирует словарь данных (его также называют переводной таблицей или таблицей строк). Образцы новых данных сравниваются с записями словаря. Если они там не представлены, то создается новая кодовая фраза. Если строка повторно встречается во входном потоке, то в выходной поток записывается ссылка на соответствующую строку словаря, которая имеет меньшую величину, чем исходный фрагмент данных. Таким образом реализуется сжатие информации.

Декодирование LZW-данных производится в обратном порядке. Декомпрессор читает код из потока данных и, если этого кода еще нет в словаре, добавляет его туда. Затем этот код переводится в строку, которую он представляет, и заносится в выходной поток несжатых данных.

Ряд графических форматов, в том числе и один из базовых - TIFF - используют в своих современных версиях встроенное LZW-сжатие. В частности, этот формат использован для представления рисунков в данной книге. Достоинством этого метода для графических файлов является хорошее сжатие данных для любой глубины представления цвета, начиная от штриховых и кончая полноцветными изображениями. В частности, такое сжатие успешно используется в формате GIF с индексированными цветами (глубина цвета 8 бит). Оба эти формата будут описаны в данном разделе.

В других случаях используется сжатие с регулируемой величиной потерь и переменным коэффициентом сжатия. Чем больше величина потерь, тем больше и коэффициент сжатия. Программа сжатия обычно делит все изображение на блоки размером 8x8 пикселов каждый. Уменьшение сжимаемого фрагмента позволяет уменьшить пропорционально квадрату его линейных размеров время обработки, т. е. деление на фрагменты эффективно увеличиваетскорость преобразования. Далее к значениям пикселов применяется формула, называемая дискретным косинусным преобразованием. Оно преобразует матрицу пикселов в матрицу значений амплитуд пространственного спектра изображения.

Значения элементов полученной матрицы характеризуют различные составляющие спектра: левый верхний угол результирующей матрицы соответствует самым низким частотам пространственного спектра, а правый нижний - самым высоким. Коэффициент качества преобразования, введенный предварительно пользователем, используется при получении значений элементов матрицы квантования. Чем ниже коэффициент качества, тем большие будут значения у элементов последней матрицы. Далее каждый элемент матрицы амплитуд делится на соответствующий элемент матрицы квантования. Полученные в итоговой матрице значения округляются до ближайшего целого числа. В результате таких операций в правой нижней части итоговой матрицы будет тем больше нулевых элементов, чем ниже заданный пользователем коэффициент качества. Затем программа сжатия кодирует элементы последней матрицы, начиная от левого верхнего по строке до правого нижнего одним из методов кодирования без потерь, причем чем больше нулей в последней матрице, тем меньше окажется информационный объем сжатого файла. Величина коэффициента сжатия для этого метода изменяется в пределах от 10 до 100 в зависимости от заданного значения коэффициента качества.

Декодирование сжатого описанным методом файла изображения начинается с шага обратного преобразования без потерь, в результате чего восстанавливается заключительная матрица, в которой содержится ряд нулевых элементов в правой нижней части. Затем значения элементов этой матрицы домножаются на элементы матрицы квантования, хранимой в самом сжатом файле. В результате получим восстановленную матрицу амплитуд пространственного спектра, значения которой отличаются отэлемен-тов исходной (они округлялись до целого значения в процессе сжатия с потерями), что и определяет отличия восстановленного изображения от исходного. Далее применяется обратное косинусное преобразование, в результате чего получим восстановленную матрицу значений пикселов, размер которой по-прежнему 8x8. В результате потери высокочастотных составляющих восстановленное изображение будет выглядеть более блеклым и размытым по сравнению с исходным.

Далее остановимся на основных форматах графических файлов. Самым универсальным графическим форматом является TIFF, разработанный известной в компьютерном мире фирмой Aldus для хранения оцифрованных изображений больших размеров и высокого разрешения (в 1999 г. эта фирма вошла в состав еще более крупной фирмы Adobe, хорошо известной среди дизайнеров, издателей и полиграфистов всего мира своими программными пакетами для обработки растровой и векторной графики). Формат подходит для профессиональной работы художников с графикой и для факсимильной связи и передачи изображения, размером до несколько страниц. Формат обладает универсальностью и высокой гибкостью и хранит графические данные в структурированном виде, что позволяет графическим приложениям осуществлять быстрый поиск и загрузку нужных фрагментов изображения. В нем используется как полно-цветовое представление, так и представление с индексированными цветами. Он часто применяется для обмена различными типами графики. Однако размер графических файлов, представленных в этом формате, велик, что препятствует его использованию в электронных изданиях. Этот недостаток компенсируется в последних версиях формата применением эффективного встроенного LZW-сжатия, о котором было сказано выше.

Graphic Interchange Format (GIF) компьютерной информационной службы CompuServe является одним из наиболее употребительных растровых форматов в электронных, в особенности сетевых, изданиях. Он был создан для упрощения обмена данными в локальных компьютерных сетях, при возможности отображения этих данных. Основных достоинств у формата два:

    пригодность для различных платформ, т. е. формат является платформно-независимым;

    малый размер файлов благодаря использованию мощного алгоритма сжатия без потерь.

Изображение записывается в этом формате с использованием RGB-цветовой модели и данных встроенной в файл палитры индексированных цветов. К сожалению, серьезным ограничением для этого формата является ограниченная глубина цвета, не превышающая 8 бит на пиксел. Важное достоинство этого формата состоит в том, что он позволяет хранить в одном файле несколько изображений. Современная версия GIF89a решила проблему обработки таких изображений, размещенных в одном файле, с помощью дополнительно включенного в файл блока управления графикой. Этот блок позволяет программе просмотра организовать взаимодействие каждого последующего изображения с текущим, что и обеспечило создание широко распространенных анимационных GIF-файлов.

Графические данные в этом формате могут храниться как последовательно, строка за строкой, так и в формате, чередующем строки. В последнем случае рисунок первоначально строится на основе 1/8 части от общего описания, а в дальнейшем изображение «прорисовывается» все четче и четче.

Растровый формате глубиной представления цвета до 48 битс использованием той же RGB-модели создан специальной группой разработчиков и получил название PNG (Portable Network Graphic - переносимый сетевой формат), что произносят как «пинг». Формат PNG изначально планировался как замена формату GIF, но с улучшенными возможностями представления цвета. Он, как и GIF, поддерживает чередование строк и ускоренную начальную загрузку файла. В нем используется улучшенный алгоритм сжатия информации. Кроме того, в формате поддерживается режим полупрозрачных корректирующих слоев, аналогичный используемым в векторном AI и растровом PSD форматах графических пакетов фирмы Adobe. Единственное ограничение формата PNG по сравнению с GIF состоит в невозможности хранения в одном файле нескольких изображений и, вследствие этого, отсутствии анимационных возможностей.

Рассмотренные выше графические форматы содержали внутреннюю компрессию без потерь информации. Еще один формат, который относят к числу самых употребительных, характеризуется регулируемой величиной сжатия в зависимости от допустимой потери качества изображения. Этот формат разработан объединенной группой экспертов в области фотографии (Joint Photographic Experts Group) и назван аббревиатурой JPEG (расширение файлов JPG). Этот формат также растровый с глубиной цвета, равной 24 битам. Преимущественно используется цветовая модель HSL (Hue-Saturation-Lightness, или Оттенок-Насыщенность-Яркость). Алгоритм сжатия, используемый в таких файлах, носит название «алгоритм сжатия JPEG». Он был описан ранее в этом же разделе в качестве примера технологии сжатия с потерями в графических файлах. Различные его варианты использованы также при организации сжатия видеоданных (см. § 3.5).

Графические программы, которые позволяют хранить данные в этом формате, обычно выводятспециальную линейку, на которой устанавливается значение параметра качества, изменяющегося в пределах от 0 до 10 (рис. 3.3
). Одновременно с непрерывным изменением коэффициента качества на линейке появляется дискретный параметр качества в форме целого числа в окне «Качество», а рядом в списковом окне - характеристика этого параметра. При значении от 0 до 2 качество «Низкое», 3-5 - «Среднее», 6-7- «Высокое» и 8-10 - «Наивысшее». На рисунке значение коэффициента качества равно б и качество «Высокое». При сохранении изображения можно установить «Разновидность формата» в позицию «Progressive», при которой величина чередования строк устанавливается в пределах от 3 до 5, что обеспечивает быструю начальную загрузку изображения низкого качества в сетевых структурах.

Используемый в формате JPEG подход «сжатие с потерями» частично идентифицирует и удаляетту информацию, которая несущественна для восприятия изображения. Лишь при сжатии изображения с резко выраженными контурами линии начинают «дрожать». При высоких значениях коэффициента качества изображения этот эффект не проявляется. Возможно, в дальнейшем появится вариант формата с избирательной установкой коэффициента качества для различных фрагментов изображения, что позволит достигнуть высокого качества при очень высоких коэффициентах сжатия.

В заключение этого раздела укажем последовательность графических форматов в порядке убывания их популярности (или частоты применения) для электронных изданий и документов: GIF, JPEG, PNG, TIFF.

Форматы представления аудиофайлов

В этом разделе речь пойдет о цифровых форматах, хранящих звук файлов. Иначе говоря, - о хранении оцифрованного звука. Напряжение, передаваемое по телефонным каналам и несущее звук, представляет собой аналоговый сигнал достаточно сложной формы. Чтобы преобразовать такой сигнал в цифровую форму, необходимо выполнить последовательно две операции: дискретизацию и квантование. состоит в периодическом измерении значений напряжения (на рис. 3.4
дискретизация сигнала производится в моменты времени t 1 , . . , t 4 , . .), а квантование - в преобразовании измеренных аналоговых значений в цифровой код. Соответственно, на качество оцифрованного звукового сигнала оказывают влияние два фактора: частота дискретизации и разрядность цифрового кода, получаемого при квантовании. При увеличении частоты дискретизации и разрядности кода качество оцифрованного звука улучшается, но пропорционально возрастает объем информации, которая должна храниться в файле, т. е. необходимо найти компромиссное решение между качеством и размерами файла.

Частоту дискретизации определить достаточно просто. В соответствии стеоремой Котельникова частота дискретизации должна быть вдвое больше максимальной частоты спектра звукового сигнала. Принятая в настоящее время частота дискретизации для аудио-CD составляет 44100 Гц, т. е. максимальная воспроизводимая частота звукового спектра составляет 20050 Гц, что превышает диапазон звуков, воспринимаемых ухом человека. Это обеспечивает идеальное звучание таких устройств. Частота дискретизации в телефонных сетях составляет 8000, что более чем в два раза превышает полосу пропускания телефонного канала, равную 3000 Гц.

Количество уровней или разрядность квантования характеризует точность передачи уровня звукового сигнала. Действительно, при 256 уровнях квантования или представлении уровня звука с помощью 8 бит информации, величина погрешности квантования равна половине расстояния между соседними уровнями, так как к именно с этой точностью значение электрического напряжения может быть преобразовано в цифровой код (притом условии, что наименьшему уровню сигнала, обозначенному min на рис. 3.4
, соответствует цифровой код 00000000 или OOh, а наибольшему, обозначенному max, - 11111111 или Offh в 16-тиричной форме представления), т. е. отнесено к одному из двух соседних уровней, между которыми находится реальное значение сигнала. Сказанное иллюстрируется рис. 3.4
. Нетрудно сообразить, что при частоте дискретизации в 44100 Гц и квантовании каждого такого уровня 16-двоичными разрядами (4096 уровней квантования) хранение одной минуты цифрового аудио потребует около 5 Мб информационного пространства, а 30 минут стереозвучания - около 300 Мб.

Закодированные описанным способом цифровые аудиоданные характеризуются значительной избыточностью, т. е. они могут быть упакованы, а затем восстановлены без всякой потери качества. Однако применение для сжатия цифрового аудио архиваторов обычного типа, таких как ARJ или ZIP, позволяет сжать исходный файл приблизительно лишь на 20%, т. е. оно неэффективно.

Основная идея сжатия аудиосигнала с потерями - пренебрежение теми фрагментами звука, которые лежат вне пределов восприятия человеческого уха. Первая такая возможность определяется маскирующим эффектом, в соответствии с которым сильные звуки приводят к невосприимчивости уха к слабым в том же самом частотном диапазоне. Поэтому слабые звуки можно кодировать с малым количеством уровней, в результате чего сокращается количество информации, используемое при кодировании звука.

Далее, весь частотный диапазон делится на подполосы, каждая из которых обрабатывается отдельно, причем маскирующий эффект используется как внутри каждой подполосы, так и между ними, т. е. очень мощный звук в одной из подполос приводит к маскированию во всех остальных. Затем используются особенности психоакустической модели человеческого слуха, в соответствии с которой тщательно сохраняются звуки хорошо воспринимаемых частот и удаляются звуки тех частот, которые не воспринимаются.

Для стереозвучания используется дополнительный прием, связанный с тем, что стереоэффект воспринимается человеком только в области средних звуковых частот. Поэтому сигнал низких и высоких частот передается в монофоническом звучании.

Наконец, используются специальные алгоритмы сжатия, основанные на высокой предсказуемости звукового сигнала, т. е. большом значении его коэффициента автокорреляции. Все перечисленные выше методы и алгоритмы позволяют получить десятикратный и более высокий коэффициент сжатия практически без потери качества звучания, что реализуется в формате МРЗ, разработанном комитетом MPEG (Motion Picture Expert Group - группа экспертов в области движущихся изображений).

Для воспроизведения звуковых файлов формата МРЗ существует целая группа программ-плейеров. Список большинства из них можно найти на сайте http://www.dailymp3.com . Самые популярные из них - это Winamp, включаемая в дистрибутив браузера Netscape Communicator начиная с версии 4.7, K-Jofol, которая является самым быстрым декодером звука, и NAD (или NADDY), являющаяся лидером по качеству воспроизведения звука. Другие плейеры используются гораздо реже.

Из форматов звуковых файлов следуетупомянуть AU для UNIX-подобных систем и платформ, WAV - стандарт звуковых файлов для операционной системы Windows, AIFF - стандарт звуковых файлов для платформы Apple Macintosh и MIDI (Musical Instrument Digital Interface) - формат электронных музыкальных инструментов. Кратко остановимся на каждом из них.

Формат AU - один из наиболее распространенных в сети Интернет. В заголовочной части файла определяются параметры звуковых данных:

частота дискретизации и разрядность квантования, число звуковых каналов и метод кодирования. Наиболее распространенные файлы этого формата носят подзаголовок p-Law, рассчитанные на один звуковой канал с полосой 8000 Гц. Подзаголовок p-Law означает преобразование значений линейного квантования в логарифмическую шкалу значений, которая производится в соответствии с уравнением:

где Y μ - значение в логарифмической шкале, m - исходное квантованное значение, m p - максимальная величина последнего значения, μ - постоянное значение, величина которого определяет область, в которой обеспечивается наиболее высокое качество звучания.

В формате AU наряду с 8-разрядным логарифмическим кодированием, предусмотрена возможность представления 16-разрядного линейного стереозвука, имеющего частоту дискретизации 22050 и 44100 Гц.

Формат WAV является основным на платформе Windows. Фактически это специальный тип файла формата RIFF (Resource Interchange File Format), который предназначен для хранения произвольных структурированных данных. Полное название такого формата - WAVE RIFF Microsoft Windows. Звуковые данные в таком файле обычно хранятся в РСМ-форме (РСМ - Pulse Code Modulation или импульсно-кодовая модуляция). Это означает запись в файле значений квантованного кода в последовательных точках дискретизации. В заголовочной части файла содержится основная информация об оцифрованном звуке, например число каналов и частота дискретизации, а также среднее число передаваемых в секунду байтов. Последняя характеристика позволяет программе воспроизведения звука выбрать требуемые размеры буфера для хранения звуковых данных. Большинство программ воспроизведения звука буфферизуют количество данных, соответствующее одной секунде непрерывного звучания.

Формат WAV поддерживает также ряд дополнительных блоков данных. К ним относят дополнительную информацию о сжатых звуковых данных. В частности, фирма IBM зарегистрировала специальные коды форматирования для сжатия в формате u-Law. Специальный блок позволяет помечать определенные позиции в потоке звуковых данных, что дает возможность синхронизировать звуковой ряд с видеорядом. Предусмотрены также блоки для размещения дополнительной текстовой информации.

Формат Audio Interchange File Format (AIFF) преимущественно предназначен для работы на платформе Macintosh. Он во многом напоминает WAV, но позволяет, в отличие от последнего, хранить еще и шаблоны, т. е. образцы оцифрованного звука, которые можно использовать как шаблоны для отдельных нот. Специальная версия формата AIFF-C поддерживает сжатие.

Musical Instrument Digital Interface (MIDI) - старейший звуковой формат, который позволил стандартизировать работу с различными электронными музыкальными инструментами. Стандарт базируется на пакетах данных, каждый из которых соответствует определенному MIDI-событию. Эти события можно разделить по каналам. Сложная среда такого файла может включать различную аппаратуру на каждом канале, причем отдельная часть будет отвечать за события на каждом канале. Такие файлы позволяют хранить не запись оцифрованного звука, а только ноты. В результате они гораздо компактнее других типов звуковых файлов. Недостатком такого формата является то, что он не определяет в явном виде всех тонкостей воспроизведения звука.

Форматы представления анимации и цифрового видео

Анимационные GIF-файлы

Известно, что анимационные файлы в формате GIF, занимают почетное место на Web-страницах. Надо сказать, что в электронных изданиях любого типа анимационные файлы также используются достаточно широко. Это объясняется тем обстоятельством, что GIF-файлы непосредственно воспроизводятся большинством браузеров, причем информационный объем, занимаемый этими файлами, сравнительно невелик.

Искусственный мир компьютерной анимации лежит где-то посередине между миром неподвижных изображений, форматы которых были рассмотрены в § 3.3 , и реальным миром видеоизображений. Обычные мультипликационные фильмы состоят из множества рисованных изображений-кадров, в которых последовательно изменяются позиции объекта анимации. В результате при отображении с достаточной скоростью такой последовательности изображений у зрителя возникает впечатление движения объектов.

Возможности GIF-анимации связаны с тем, что этот формат позволяет хранить в одном файле несколько различных изображений. Единственный существенный недостаток GIF-файлов связан с применением индексированных цветов, для чего в файле используется глобальная и локальные цветовые палитры. Глобальная цветовая палитра хранит до 256 различных цветовых оттенков, каждый из которых может быть использован в любом из изображений, которое хранится в данном файле. Локальные палитры относятся к каждому отдельному изображению, т. е. хранимые в них цветовые оттенки не могут использоваться в других (не своих) изображениях.

Каждое такое изображение формирует отдельный кадр, причем задержка следующего кадра и его линейное смещением относительно предыдущего по каждой координате может регулироваться. Разрешение для всех изображений, входящих в данный файл, или количество пикселов по каждой координате должно в каждом файле поддерживаться постоянным.

Структура файлового формата GIF представлена на рис. 3.5. Файл начинается с общего заголовка и дескриптора логического экрана, причем в последнем хранится ширина и высота каждого изображения в пикселах, индекс цвета фона и значение коэффициента сжатия. Там же задается размер глобальной цветовой таблицы, которая может и отсутствовать. В этом случае обязательно используется для каждого отдельного изображения локальная палитра. В большинстве случаев рекомендуется пользоваться именно глобальной палитрой, что экономит общее информационное пространство, занимаемое файлом.

После указанных трех элементов следуют наборы данных, характеризующие каждое из входящих в файл изображений. Каждое изображение в отдельности описывается локальным дескриптором и локальной цветовой палитрой, после которых следуют данные изображения. Последние обычно состоят из последовательностей пакетов данных, называемых блоками, причем в состав отдельных блоков могут входить и подблоки.

Малый размер GIF-файлов связан с использованием поблочного LZW-сжатия изображения, причем большинство сжимаемых блоков имеют размер 255 байтов. Каждый пиксел декодированного изображения характеризуется размером в 1 байт и содержитзначение индекса цвета, т. е. положение нужного цветового тона в глобальной или локальной цветовой палитре.

Имеется две разновидности формата GIF-файлов: первоначальная версия, названная GIF 87a, и выпущенная двумя годами позднее вторая версия, названная GIF 89а. Вторая версия добавила несколько новых возможностей, в том числе хранение текстовых и графических данных в одном файле. Для этого в описание файла добавлен специальный блок «Управляющие расширения», который размещен сразу после трех общих для всего файла элементов и предшествует описанию отдельных изображений в составе файла. На рис. 3.6. этот блок выделен двумя жирными линиями. В состав управляющих расширений входят: расширение комментариев, расширение приложений и расширение управления графикой. В последнем указана, в частности, и величина задержки кадра в сотых долях секунды, а также значение индекса прозрачности цвета, который позволяет создавать новые анимационные эффекты. Кстати, большинство современных программ-аниматоров обеспечивает подготовку анимационных файлов именно в этом формате (см. глава 5).

Принципы представления цифрового видео

Обычные телевизионные видеоданные представляют собой поток аналоговых сигналов. Компьютерная обработка видеоинформации состоит в преобразовании их в цифровой формат с последующим хранением этих данных на жестком или компакт-диске или другом устройстве хранения информации. Оцифровка видеосигнала, как и оцифровка звука, включает те же две стадии: дискретизация данных аналогового видеопотока, т. е. снятие отсчетов с определенной частотой, и преобразование каждого такого отсчета в цифровой эквивалент или квантование.

При хранении оцифрованных данных в несжатом формате изображение размером 400x300 пикселов с глубиной цвета 24 бита на пиксел, обновляемое с частотой 25 Гц, потребует скорости передачи информации более 5,5 Мб/с. А хранение данных для показа 5-минутного ролика в указанном формате потребует информационное пространство, превышающее 1,6 Гб. Естественно, что при работе с такими данными невозможно обойтись без сжатия, однако и этом случае потребуется время, определенные вычислительные мощности на распаковку данных. Достичь оптимального сжатия можно путем совершенствования аппаратных или программных средств, а может быть, совместно тех и других.

В качестве аппаратных средств используются специальные видеопроцессоры, которые поддерживают высокоскоростную компрессию и декомпрессию данных, не загружая центральный процессор компьютера. Второй подход состоит в использовании специализированных методов программного сжатия и распаковки предварительно сжатых видеоданных.

Аналоговый видеосигнал включает в себя несколько различных компонентов, объединенных в единое целое. Такой составной видеосигнал малопригоден для оцифровки. Предварительно его следует разделить на так называемые базовые компоненты. Обычно компоненты представляют собой три различных сигнала, соответствующие определенной модели представления цветового пространства. Если в статической графике используется RGB-цветовое представление, то в цифровом видео чаще используется модель YUV. Видеопоследовательности отображаются в виде серии кадров или фреймов, каждый из которых, no-существу, является графическим изображением и включает в себя определенное число пикселов. Такой видеофрейм может быть сжат с помощью одного из алгоритмов сжатия изображений, с потерями или без потерь.

Так, применение дискретного косинусного преобразования, рассмотренного в § 3.3 , позволяет выделить высокочастотные составляющие пространственного спектра, которые практически не воспринимаются человеческим глазом и могут быть отброшены как избыточная информация. Затем фрейм может быть сжат с помощью одного из алгоритмов сжатия без потерь или за счет более сложной схемы, такой как JPEG. При внутрифреймовом кодировании достигается коэффициент сжатия в пределах от 20 до 40. Еще большее значение этого коэффициента достигается при кодировании совокупности фреймов.

Различие между кадрами в обычной видеопоследовательности, как правило, невелико. Поэтому если кодировать не целиком каждый фрейм, а лишь отличия каждого последующего фрейма от предыдущего, то объем данных, характеризующий каждый фрейм, существенно уменьшится. Это так называемое межфреймовое дельта-сжатие или компенсация движения. Применение типовых схем компенсации движения позволяет довести суммарный коэффициент сжатия видеопоследовательности до 200 и более.

Исходные релизы форматов QuickTime и VfW содержали очень простые кодеки, так как уровень развития компьютерной техники того периода не мог обеспечить применение более качественных методов, требовавших значительно более высоко уровня вычислительного ресурса. По мере совершенствования компьютерных технологий стало возможным использовать более эффективные методы сжатия и распаковки, что привело к применению новых кодеков.

К наиболее известным и широко применяемым форматам следует отнести QuickTime фирмы Apple. Под этим именем объединены два различных понятия. Для пользователей - это стандартный способ работы с потоковыми данными, такими как видео и аудио. Для производителей - это гибкое средство разработки приложений, совершенствующееся по мере развития технологий. Формат пригоден для работы с любой времязависимой информацией. Видеофильмы в этом формате могут содержать несколько видео- и аудиодорожек. Таким образом, фильм в этом формате может иметь многоязыковую поддержку, а также содержать MIDI-информацию для управления внешним синтезатором. Продолжительность событий на каждой из дорожек также может быть различной. Можно также накладывать друг на друга несколько видеодорожек.

Формат был создан первоначально для платформы Macintosh для хранения аудио- и видеоданных на магнитных и оптических носителях. Сейчас он используется и в оболочке Windows. Предусмотрен специальный набор средств, называемый Movie Toolbox, который обеспечивает редактирование и модификацию видеофильмов в данном формате, т. е. можно вклеивать, вырезать, копировать и редактировать отдельные видеофрагменты таким же образом, как это делается при профессиональном монтаже обычного кино. Данные в этом формате можно хранить на магнитном или компакт-диске в виде обычного файла, а также помещать на цифровой видеомагнитофон.

Набор средств Movie Toolbox определяет шесть методов сжатия, используемых при хранении видеофильмов в этом формате. Перечислим эти методы.

Photo Compressor - предназначен для сжатия отдельных изображений с глубиной цвета от 8 до 24 бит (для сжатия фреймов или видеокадров обычно используется метод JPEG).

§ 3.3 или непосредственно в ресурсе звуковой среды видеофильма.

Основная структурная единица файлов этого формата носит название атом. Различают атомы-контейнеры и атомы-листья. Контейнеры содержат другие атомы, в том числе и атомы-контейнеры. А атомы-листья содержат только данные. Каждый поток данных файла хранится в отдельном атоме дорожки. Дополнительные сведения о данном формате можно почерпнуть из книг и на сайте www.quicktime.apple.com .

Комитет Motion Picture Expert Group, как уже ранее упоминалось, был создан международной ассоциацией по стандартизации специально для создания высококачественных стандартов сжатия цифрового видео. И действительно был разработан ряд стандартов, таких как MPEG-1, MPEG-2, MPEG-4 для воспроизведения видео с различной скоростью и качеством на платформах Windows, Macintosh и UNIX, а также рекомендован определенный набор методов сжатия видео- и аудиоданных.

Формат MPEG хранит несколько типов кадров. Независимые или ключевые кадры (l-frames) не требуют никакой дополнительной информации для декодирования. При их сжатии используется методика, аналогичная JPEG-сжатию, но более эффективная. Предсказуемые кадры (P-frames) хранят различие между предыдущим независимым или предсказуемым кадром и текущим кадров (то, что в § 3.5.2 определялось как межфреймовое дельта-сжатие или компенсация движения). Дальнейшее улучшение качества сжатия достигается путем использования двунаправленных предсказаний движения или B-frames. В нем предсказание сохраняется как разности текущего как с предыдущим, так и с последующим кадрами, вследствие чего последовательность кадров может иногда нарушаться.

При кодировании звука MPEG отбрасывает ряд избыточных данных, опираясь на особенности человеческого слуха, о которых уже говорилось в § 3.4 . В результате достигается гораздо более высокий уровень сжатия по сравнению с РСМ и u-Law, о которых говорилось в предыдущем параграфе. Оценивая данный формат, следует отметить, что он гарантирует самое высокое качество как видео, так и аудио, но требует наличия большого количества вычислительных ресурсов.

Формат Audio/Video Interleave (AVI) фирмы Microsoft получил свое название из-за того, что в нем аудио- и видеоданные расположены перемежающимися слоями. В заголовке файла хранится множество различной информации, в том числе, о частоте следования и размере кадров. Программа воспроизведения должна извлечь данные видеокадра и связанного с ним звукового сопровождения, затем передать звук на звуковую карту, а видеоданные распаковать и воспроизвести на экране монитора.

Поддержка равномерного потока данных требует внимания ко всем частям системы воспроизведения для того, чтобы сохранить синхронизацию независимо от задержек при распаковке видеоданных.

В структуре AVI-файла содержатся два блока LIST. Первый из них (LIST hdrl) содержит информацию о фильме в целом и каждом из его потоков, включая разрешение экрана и частоту кадров видеоданных, а также формат, частоту оцифровки и разрядность квантованных аудиоданных. Второй блок LIST movi хранит сами видео- и аудиоданные в виде отдельных потоков, сегментированных на блоки выборки. Интересно отметить, что в формате AVI звуковые данные опережают видео на 0,75 с.

Представление графических данных Форматы графических данныхПРЕДСТАВЛЕНИЕ ГРАФИЧЕСКИХ ДАННЫХ
ФОРМАТЫ ГРАФИЧЕСКИХ ДАННЫХ
Графические форматы различаются по
- виду хранимых данных (растровая, векторная и смешанная формы),
- по допустимому объему данных
- параметрам изображения
- хранению палитры
- методике сжатия данных - по способам организации файла (текстовый, двоичный)
- структуре файла (с последовательной или ссылочной (индексно-последовательной)
структурой) и т.д.


Растровый файл состоит из точек, число которых определяется разрешением, измеряемым обычно в точках на дюйм
(dpi) или на сантиметр (dpc).
Очень важным фактором, влияющим, с одной стороны, на качество вывода изображения, а с другой - на размер файла,
является глубина цвета, т.е. число разрядов, отводимых для хранения информации о трех составляющих (если это
цветная картинка) или одной составляющей (для полутонового не цветного изображения).
Например, при использовании модели RGB глубина 24 разряда на точку означает, что на каждый цвет (красный, синий,
зеленый) отводится по 8 разрядов и поэтому в таком файле может храниться информация о 2^24 = 16,777,216 цветах
(Обычно в этом случае говорят о 16 млн. цветов). Очевидно, что даже файлы с низким разрешением содержат в себе
тысячи или десятки тысяч точек.
Так, растровая картинка размером 1024х768 точек и с 256 цветами занимает 768 Кбайт. По сравнению с векторными
форматами растровые устроены проще. Это прямоугольная таблица или матрица bitmap, в каждой ячейке или клетке
которой установлен пиксель.

Растровые файлы графических данных

РАСТРОВЫЕ ФАЙЛЫ ГРАФИЧЕСКИХ ДАННЫХ
Считывание информации из файла растрового изображения сводится к следующим
действиям:
1 - Определяется размер изображения в виде произведения пикселей по горизонтали и
вертикали;
2 - Определяется размер пикселя;
3 - Определяется битовая глубина, она характеризует информационную емкость пикселя
в битах или цветовую разрешающую способность (количество цветов).
В цветовом RGB изображении каждый пиксель кодируется 24-битовым числом, поэтому
в каждой ячейке битовой матрицы хранится число из 24 нулей и единиц.


Векторный способ записи графических данных применяется в системах автоматического проектирования
(CAD) и в графических пакетах.
В этом случае изображение состоит из простейших элементов (линия, ломаная, кривая Безье, эллипс,
прямоугольник и т.д.), для каждого из которых определен ряд атрибутов (например, для замкнутого
многоугольника - координаты угловых точек, толщина и цвет контурной линии, тип и цвета заливки и т.д.).
Записывается также место объектов на странице и расположение их друг относительно друга (какой из
них "лежит" выше, а какой ниже).
У каждого метода есть свои преимущества. Растровый позволяет передавать тонкие, едва уловимые
детали образов, векторный же лучше всего применять, если оригинал имеет отчетливые геометрические
очертания. Векторные файла меньше по объему, зато растровые быстрее вырисовываются на экране
дисплея, так как для вывода векторного изображения процессору необходимо произвести множество
математических операций. С другой стороны, векторные файлы гораздо проще редактировать.

Векторный файлы графических данных

ВЕКТОРНЫЙ ФАЙЛЫ ГРАФИЧЕСКИХ ДАННЫХ




Основные критерии выбора формата – это совместимость программ и компактность записи.
Существует множество программ-трансляторов, переводящих данные из векторного формата в
растровый. Как правило, такая задача решается довольно просто, чего нельзя сказать об обратной
операции - преобразовании растрового файла в векторный и даже о переводе одного векторного
файла в другой. Векторные алгоритмы записи используют уникальные для каждой фирмыпоставщика математические модели, описывающие элементы изображения

Форматы представления растровых данных

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ РАСТРОВЫХ ДАННЫХ
Итак, Растровые форматы обладают следующими особенностями
В заголовке растрового формата располагаются:
Идентификатор формата (первые несколько байт). Например, в формате BMP это - 2 символа "BM" (BitMap), в формате GIF - GIF87a.
Тип данных (RGB или палитра, тип упаковки, кол-во битов на пиксель)
Размеры изображения
Дополнительные параметры (разрешение, строка описания и т.п.)
5 Далее располагается палитра (если она требуется) и массив пикселей. В некоторых форматах начало палитры и массива
пикселей указывается в заголовке, в других - они следуют непосредственно после него.
Рассмотрим коротко каждый из форматов

Форматы представления растровых данных - TIFF

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ РАСТРОВЫХ ДАННЫХ TIFF
TIFF (Tagged Image File Format). Формат предназначен для хранения растровых
изображений высокого качества (расширение имени файла.ТIF). Относится к числу
широко распространенных, отличается переносимостью между платформами (IBM PC
к Apple Macintosh), обеспечен поддержкой со стороны большинства графических,
верстальных и дизайнерских программ. Предусматривает широкий диапазон цветового охвата - от монохромного черно-белого до 32-разрядной модели цветоделения CMYK. Начиная с версии 6.0 в формате TIFF можно хранить сведения о масках
(контурах обтравки) изображений. Для уменьшения размера файла применяется
встроенный алгоритм сжатия LZW. Формат.ТIF считается лучшим для импорта
растровой графики в векторные программы.

Форматы представления растровых данных - PSD

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ РАСТРОВЫХ ДАННЫХ PSD
PSD (PhotoShop Document). Собственный формат программы Adobe Photoshop
(расширение имени файла.PSD), один из наиболее мощных по возможностям
хранения растровой графической информации. Позволяет запоминать параметры
слоев, каналов, степени прозрачности, множества масок. Поддерживаются 48разрядное кодирование цвета, цветоделение и различные цветовые модели.
Основной недостаток выражен в том, что отсутствие эффективного алгоритма сжатия
информации приводит к большому объему файлов, однако данный формат
постоянно совершенствуется. Существует еще один формат программы Adobe
Photoshop

Форматы представления растровых данных - BMP

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ РАСТРОВЫХ ДАННЫХ BMP
Windows Bitmap. Формат хранения растровых изображений в операционной
системе Windows (расширение имени файла.BMP). Соответственно, поддерживается
всеми приложениями, работающими в этой среде. Формат Windows BMP является
одним из простейших форматов. Он встроен в операционные системе Microsoft
Windows, сжатие в BMP-формате оказывает эффект только при наличии в
изображении больших областей одинакового цвета, что ограничивает ценность
встроенного алгоритма сжатия. BMP-файлы Windows редко находятся в сжатом виде.

10. Форматы представления растровых данных - GIF

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ РАСТРОВЫХ ДАННЫХ GIF
GIF (Graphics Interchange Format). Формат GIF (Graphics Interchange Format, Формат Взаимообмена Графикой).
Преимущественное использование GIF - передача графических данных в режиме "онлайн" по компьютерным сетям.
Эксклюзивный владелец - CompuServe Incorporated. Стандартизирован в 1987 году как средство хранения сжатых изображений с
фиксированным (256) количеством цветов (расширение имени файла.GIF). Получил популярность в Интернете благодаря высокой
степени сжатия. Последняя версия формата
GIF89a позволяет выполнять чересстрочную загрузку изображений и создавать рисунки с прозрачным фоном, поддерживает
анимированные иллюстрации. Суть чересстрочной записи изображения состоит в том, что в начале файла хранятся строки
изображения с номерами кратными 8, потом кратными 4 и т.д. Просмотр изображения идет с нарастающим уровнем детализации,
т.е. видно приблизительное изображение до окончания полной загрузки. Ограниченные возможности по количеству цветов
обусловливают его применение исключительно в электронных публикациях.
Основным форматом GIF является формат GIF89a (стандарт 1990 года). Отличительные особенности: использование эффективного
алгоритма LZW для сжатия (см. далее), возможность сохранять как статические одиночные, так и анимированные изображения,
наличие удобных средств наложения изображений, наличие альфа-канала для отдельных цветов, использование текстовых и
специальных блоков расширения в файле. Достаточно прост для реализации и хорошо документирован. Преимущество для
сетевых технологий - чересстрочный способ кодирования изображений.

11. Форматы представления растровых данных - RAW

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ РАСТРОВЫХ ДАННЫХ RAW
RAW – формат хранения фотографий.
Это сравнительно новый формат, относится к профессиональным, размер немного больше, чем.TIFF.
Данный формат обрабатывается не всеми версиями PhotoShop, только Adobe PhotoShop CS и
Adobe PhotoShop CS2. Формат существует в нескольких вариантах и фотография, сделанная на
фотоаппарате Panasonic, может не открыться в программе Olympus Master.
Достоинства.RAW – очень высокое качество изображений и низкие потери информации, при
пересохранении не происходит потерь качества.
Недостатки.RAW – большой объем фотографий, несовместимость со старым программным
обеспечением и некоторыми цифровыми устройствами, например DVD плеером.

12. Форматы представления растровых данных - PNG

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ РАСТРОВЫХ ДАННЫХ PNG
Формат PNG – формат разработан для замены формата.GIF. Этот формат
использует сжатие без потерь, алгоритм сжатия похож на алгоритм LZW, сжатые
файлы меньше, чем файлы.GIF. Глубина цвета может любой до 48 бит, используется
двухмерная запись изображения через строчку не только строк, но и столбцов,
поддерживаются полупрозрачные пиксели, в файл записывается информация о
гамме коррекции. Гамма коррекция помогает реализации основной цели передачи
изображений в Интернете – передаче одинакового отображения информации
независимо от аппаратуры пользователя. Распространяется бесплатно

13.

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ ВЕКТОРНЫХ ДАННЫХ
Для хранения векторных изображений ОС Windows имеет собственный формат.WMF,
этот формат обеспечивает быстрый вывод изображения на экран, но искажает цвет и
имеет огромные размеры. WMF - Windows Metafile Format. В системе Windows фирмы
Microsoft для сохранения и последующего использования цветных изображений
используется свой формат метафайла. Метафайл содержит заголовок и собственно
описание изображения в виде записей GDI (Graphical Device Interface) функций.
Поддерживает векторную и растровую графику. В метафайле записаны команды
интерфейса графических устройств (GDI-команды), каждая из которых описывает одну
графическую функцию. Для того, чтобы отобразить метафайл, программа передает эти
команды специальной функции, которая воспроизводит изображение.

14. Форматы представления векторных данных

ФОРМАТЫ ПРЕДСТАВЛЕНИЯ ВЕКТОРНЫХ ДАННЫХ
Метафайлы обеспечивают независимые от устройства средства хранения и выборки графической
информации.
В отличие от растровых файлов, хранящих графическую информацию непосредственно а виде
пикселей, метафайлы идеально подходят для таких изображений, как карты, диаграммы,
архитектурные чертежи и другие рисунки, состоящие из перекрывающихся фрагментов. Так,
например, в САПР, метафайлы могут применяться для запоминания данных. Они также полезны при
передаче изображений в их собственных форматах в системный буфер Windows (clipboard) для
использования их другими приложениями. Если изображение может быть нарисовано с помощью
команд GDI, оно может быть передано другой программе как метафайл. При этом подразумевается,
что программа знает, как интерпретировать команды метафайла. Популярные приложения Windows
используют WMF-файлы для хранения графической информации.

15. Универсальные форматы представления графических данных

УНИВЕРСАЛЬНЫЕ ФОРМАТЫ ПРЕДСТАВЛЕНИЯ
ГРАФИЧЕСКИХ ДАННЫХ
К универсальным форматам хранения изображения относится формат.EPS, он
описывает как векторные, так и растровые изображения на языке описания страниц
PostScript. На экран векторные изображения выводятся в формате - .WMF, растровые
- .TIFF.
Итак, форматы растровых изображений - BMP, TIFF, PCX, PSD, IPEG, GIF; форматы
векторных изображений – WMF; Универсальные форматы – EPS, PICT, CDR, FLA и др.
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png