Решил я себе немного проапгрейдить компьютер, а так как мне надо было 2 сетевые карты и слотов не хватало, то понадобилась сетевая карта в PCI-E слот. Времени было достаточно потому решил купить на алиэкспрессе.

Нашел, по описанию полностью устроила, по цене тоже. При проверке продавца показало, что уровень риска практически нулевой. Заказал, посылка пришла через 20 дней после отправки продавцом. Кстати, сейчас у продавца скидка или распродажа, но карта стоит 3.63.



Но так как я не очень доверяю китайским производителям, то сначала внимательно посмотрел на плату. Интуиция меня не обманула, главная микросхема была припаяна мало того что со смещением, но еще и были залипы припоя в трех местах (обозначены стрелочками).

Я не стал особо разбираться за что отвечают данные выводы, но залип был на ногах связи с микросхемой памяти, и выводы питания, т.е. плата гарантированно не определилась бы как минимум, как максимум я бы остался без нового компа.

Ну и конечно смешное обозначение скорости линка в Герцах.

Не вставляя в комп написал продавцу, что мол посылку получил, но не работает, плохо припаяна микросхема. На что он ответил что мол пришлите видео. Что он там собирался разглядеть, мне непонятно. Сказал ему что попробую сделать фото, но такое все мелкое, что врядли он что то увидит. Отправил сообщение.

Не дождавшись ответа взял паяльник, убрал сопли, проверил карту - работает.

Определилась карта как Realtek PCIe GBE Family Controller, а из-за у меня уже были установлены драйверы Realtek, то карта стала работать сразу, ничего доустанавливать не пришлось.
Диспетчер оборудование пишет о ней -
PCI\VEN_10EC&DEV_8168&SUBSYS_816810EC&REV_02\4&293AFFCC&1&00E0

Протестировал скорость копирования, правда все уперлось в скорость порта роутера (с удивлением обнаружил, что мне нечем протестировать карту на гигабитной скорости), пока нечем протестировать гигабит, да и если честно, пока не вижу в нем крайней необходимости, хватает и 100 мегабит, но 100 мегабит PCI-E как то не видел, потому пускай живет. Тем более, что за эти деньги я у нас врядли куплю.

В итоге написал продавцу что чип перепаял, карта работает, получение подтвержу, но очень недоволен. Качество изготовления очень плохое. В итоге продавец предложил возврат в 3 доллара, я согласился, собственно к продавцу у меня претензий особо не было, на контакт шел сразу и без проблем.

Но суть не в этом, мораль данного микро-обзора в том, что на всякий случай перед тем, как вставить себе в компьютер новую железку, не поленитесь внимательно осмотреть ее, что бы не остаться без компьютера вообще.

В общем доставка отлично, карта самая банальная, цена приемлемая, доставка быстрая, но качество хромает и довольно сильно.

Наверное так собирали мою сетевку

Планирую купить +6 Добавить в избранное Обзор понравился +28 +50

Не успело еще, как говорится, обсохнуть молоко на губах только что родившего­ся стандарта быстрого Ethernet, как комитет 802 приступил к работе над новой версией (1995). Ее почти сразу окрестили гигабитной сетью Ethernet, а в 1998 году новый стандарт был уже ратифицирован IEEE под официальным названием 802.3z. Тем самым разработчики подчеркнули, что это последняя разработка в линейке 802.3 (если только кто-нибудь в срочном порядке не придумает называть стандарты, скажем, 802.3ы. В свое время, Бернард Шоу предлагал расширить английский алфавит и включить в него, в частности, букву «ы», но был не убедителен.).

Главные предпосылки создания 802.3z были те же самые, что и при создании 802.3u, - повысить в 10 раз скорость, сохранив обратную совместимость со старыми сетями Ethernet. В частности, гигабитный Ethernet должен был обеспечить дейтаграммный сервис без подтверждений как при односторонней, так и при групповой передаче. При этом необходимо было сохранить неизменными 48-битную схему адресации и формат кадра, включая нижние и верхние ограничения его размера. Новый стандарт удовлетворил всем этим требованиям.

Гигабитные сети Ethernet строятся по принципу «точка - точка», в них не применяется моноканал, как в исходном 10-мегабитном Ethernet, который теперь, кстати, величают классическим Ethernet. Простейшая гигабитная сеть, показанная на схеме "а", состоит из двух компьютеров, напрямую соединенных друг с другом. В более общем случае, однако, имеется коммутатор или концентратор, к которому подсоединяется множество компьютеров, возможна также установка дополнительных коммутаторов или концентраторов (схема "б"). Но в любом случае к одному кабелю гигабитного Ethernet всегда присоединяются два устройства, ни больше, ни меньше.

Гигабитный Ethernet может работать в двух режимах: полнодуплексном и полудуплексном. «Нормальным» считается полнодуплексный, при этом трафик может идти одновременно в обоих направлениях. Этот режим используется, когда имеется центральный коммутатор, соединенный с периферийными компьютерами или коммутаторами. В такой конфигурации сигналы всех линий буферизируются, поэтому абоненты могут отправлять данные, когда им вздумается. Отправитель не прослушивает канал, потому что ему не с кем конкурировать. На линии между компьютером и коммутатором компьютер - это единственный потенциальный отправитель; передача произойдет успешно даже в том случае, если одновременно с ней ведется передача со стороны коммутатора (линия полнодуплексная). Так как конкуренции в данном случае нет, протокол CSMA/CD не применяется, поэтому максимальная длина кабеля определяется исключительно мощностью сигнала, а вопросы времени распространения шумового всплеска здесь не встают. Коммутаторы могут работать на смешанных скоростях; более того, они автоматически выбирают оптимальную скорость. Самонастройка поддерживается так же, как и в быстром Ethernet .

Полудуплексный режим работы используется тогда, когда компьютеры соединены не с коммутатором, а с концентратором. Хаб не буферизирует входящие кадры. Вместо этого он электрически соединяет все линии, симулируя моноканал обычного Ethernet. В этом режиме возможны коллизии, поэтому применяется CSMA/CD . Поскольку кадр минимального размера (то есть 64-байтный) может передаваться в 100 раз быстрее, чем в классической сети Ethernet, максимальная длина сегмента должна быть соответственно уменьшена в 100 раз. Она составляет 25 м - именно при таком расстоянии между станциями шумовой всплеск гарантированно достигнет отправителя до окончания его передачи. Если бы кабель имел длину 2500 м, то отправитель 64-байтного кадра при 1 Гбит/с успел бы много чего наделать даже за то время, пока его кадр прошел только десятую часть пути в одну сторону, не говоря уже о том, что сигнал должен еще и вернуться обратно.

Комитет разработчиков стандарта 802.3z совершенно справедливо заметил, что 25 м - это неприемлемо малая длина, и ввел два новых свойства, позволивших расширить радиус сегментов. Первое называется расширением носителя. Заключается это расширение всего-навсего в том, что аппаратура вставляет собственное поле заполнения, растягивающее нормальный кадр до 512 байт. Поскольку это поле добавляется отправителем и изымается получателем, то программному обеспечению нет до него никакого дела. Конечно, тратить 512 байт на передачу 46 байт - это несколько расточительно с точки зрения эффективности использования пропускной способности. Эффективность такой передачи составляет всего 9 %.

Второе свойство, позволяющее увеличить допустимую длину сегмента, - это пакетная передача кадров. Это означает, что отправитель может посылать не единичный кадр, а пакет, объединяющий в себе сразу много кадров. Если полная длина пакета оказывается менее 512 байт, то, как в предыдущем случае, производится аппаратное заполнение фиктивными данными. Если же кадров, ждущих передачу, хватает на то, чтобы заполнить такой большой пакет, то работа системы оказывается очень эффективной. Такая схема, разумеется, предпочтительнее расширения носителя. Эти методы позволили увеличить максимальную длину сегмента до 200 м, что, наверное, для организаций уже вполне приемлемо.

Трудно представить себе организацию, которая потратила бы немало усилий и средств на установку плат для высокопроизводительной гигабитной сети Ethernet, а потом соединила бы компьютеры концентраторами, симулирующими работу классического Ethernet со всеми его коллизиями и прочими проблемами. Концентраторы, конечно, дешевле коммутаторов, но интерфейсные платы гигабитного Ethernet все равно относительно дороги, поэтому экономия на покупке концентратора вместо коммутатора себя не оправдывает. Кроме того, это резко снижает производительность, и становится вообще непонятно, зачем было тратить деньги на гигабитные платы. Однако обратная совместимость - это нечто священное в компьютерной индустрии, поэтому, несмотря ни на что, в 802.3z подобная возможность предусматривается.

Гигабитный Ethernet поддерживает как медные, так и волоконно-оптические кабели. Работа на скорости 1 Гбит/с означает, что источник света должен включаться и выключаться примерно раз в наносекунду. Светодиоды просто не могут работать так быстро, поэтому здесь необходимо применять лазеры. Стандартом предусматриваются две операционных длины волны: 0,85 мкм (короткие волны) и 1,3 мкм (длинные). Лазеры, рассчитанные на 0,85 мкм, дешевле, но не работают с одномодовыми кабелями.

Кабели гигабитного Ethernet

Название

Тип

Длина сегмента

Преимущества

1000Base-SX

Оптоволокно

550м

Многомодовое волокно (50, 62,5 мкм)

1000Base-LX

Оптоволокно

5000м

Одномодовое (10 мкм) или многомодовое (50, 62,5 мкм) волокно

1000Base-CX

2 экранированные витые пары

25м

Экранированная витая пара

1000Base-T

4 неэкранированные витые пары

100м

Стандартная витая пара 5-й категории

Официально допускается использование трех диаметров волокна: 10, 50 и 62,5 мкм. Первое предназначено для одномодовой передачи, два других - для многомодовой. Не все из шести комбинаций являются разрешенными, а максимальная длина сегмента зависит как раз от выбранной комбинации. Числа, приведенные в таблице, - это наилучший случай. В частности, пятикилометровый кабель можно использовать только с лазером, рассчитанным на длину волны 1,3 мкм и работающим с 10-микрометровым одномодовым волокном. Такой вариант, видимо, является наилучшим для магистралей разного рода кампусов и производственных территорий. Ожидается, что он будет наиболее популярным несмотря на то, что он самый дорогой.

1000Base-CX использует короткий экранированный медный кабель. Проблема в том, что его поджимают конкуренты как сверху (1000Base-LX), так и снизу (1000Base-T). В результате сомнительно, что он завоюет широкое общественное признание.

Наконец, еще один вариант кабеля - это пучок из четырех неэкранированных витых пар. Поскольку такая проводка существует почти повсеместно, то, похоже, это и будет самый популярный гигабитный Ethernet.

Новый стандарт использует новые правила кодирования сигналов, передающихся по оптоволокну. Манчестерский код при скорости передачи данных 1 Гбит/с потребовал бы скорости изменения сигнала в 2 Гбод. Это слишком сложно и занимает слишком большую долю пропускной способности. Вместо манчестерского кодирования применяется схема, называющаяся 8В/10В. Как нетрудно догадаться по названию, каждый байт, состоящий из 8 бит, кодируется для передачи по волокну десятью битами. Поскольку возможны 1024 результирующих кодовых слова для каждого входящего байта, данный метод дает некоторую свободу выбора кодовых слов. При этом принимаются в расчет следующие правила:

Ни одно кодовое слово не должно иметь более четырех одинаковых битов подряд;

Ни в одном кодовом слове не должно быть более шести нулей или шести единиц.

Почему именно такие правила?

Во-первых, они обеспечивают достаточное количество изменений состояния в потоке данных, необходимое для того, чтобы приемник оставался синхронизированным с передатчиком.

Во-вторых, количество нулей и единиц стараются примерно выровнять. К тому же многие входящие байты имеют два возможных кодовых слова, ассоциированных с ними. Когда кодирующее устройство имеет возможность выбора кодовых слов, оно, вероятно, выберет из них то, которое сравняет число нулей и единиц.

Ссбалансированному количеству нулей и единиц потому придается такое значение, что необходимо держать постоянную составляющую сигнала на как можно более низком уровне. Тогда она сможет пройти через преобразователи без изменений. Люди, занимающиеся computer science, не в восторге от того, что преобразовательные устройства диктуют те или иные правила кодирования сигналов, но жизнь есть жизнь.

Гигабитный Ethernet, построенный на 1000Base-T, использует иную схему кодирования, поскольку изменять состояние сигнала в течение 1 нс для медного кабеля затруднительно. Здесь применяются 4 витые пары категории 5, что дает возможность параллельно передавать 4 символа. Каждый символ кодируется одним из пяти уровней напряжения. Таким образом, один сигнал может означать 00, 01,10 или 11. Есть еще специальное, служебное значение напряжения. На одну витую пару приходится 2 бита данных, соответственно, за один временной интервал система передает 8 бит по 4 витым парам. Тактовая частота равна 125 МГц, что позволяет работать со скоростью 1 Гбит/с. Пятый уровень напряжения был добавлен для специальных целей - кадрирования и управления.

1 Гбит/с - это довольно много. Например, если приемник отвлечется на какое-то дело в течение 1 мс и при этом забудет или не успеет освободить буфер, это означает, что он «проспит» примерно 1953 кадра. Может быть и другая ситуация: один компьютер выдает данные по гигабитной сети, а другой принимает их по классическому Ethernet. Вероятно, первый быстро завалит данными второго. В первую очередь переполнится буфер обмена. Исходя из этого было принято решение о внедрении в систему контроля потока (так было и в быстром Ethernet , хотя эти системы довольно сильно различаются).

Для реализации контроля потока одна из сторон посылает служебный кадр, сообщающий о том, что второй стороне необходимо приостановиться на некоторое время. Служебные кадры - это, на самом деле, обычные кадры Ethernet, в поле Туре которых записано 0x8808. Первые два байта поля данных - командные, а последующие, по необходимости, содержат параметры команды. Для контроля потока используются кадры типа PAUSE, причем в качестве параметра указывается продолжительность паузы в единицах времени передачи минимального кадра. Для гигабитного Ethernet такая единица равна 512 нс, а паузы могут длиться до 33,6 мс.

Гигабитный Ethernet был стандартизован, и комитет 802 заскучал. Тогда IEEE предложил ему начать работу над 10-гигабитным Ethernet. Начались долгие попытки найти в английском алфавите какую-нибудь букву после z. Когда стало очевидно, что такой буквы нет в природе, от старого подхода решено было отказаться и перейти к двухбуквенным индексам. Так в 2002 году появился стандарт 802.3ае. Судя по всему, появление 100-гигабитного Ethernet уже тоже не за горами.

Введение

Сети на основе 10/100 Мбит/с Ethernet будет более чем достаточно для выполнения любых задач в небольших сетях. Но как насчет будущего? Вы подумали о потоках видео, которые будут проходить по сети вашего дома? Справится ли с ними 10/100 Ethernet?

В нашей первой статье, посвященной гигабитному Ethernet, мы вплотную с ним познакомимся и определим, нужен ли он вам. Мы также постараемся узнать, что вам потребуется для создания «готовой к гигабиту» сети и проведем краткий экскурс в гигабитное оборудование для небольших сетей.

Что такое гигабитный Ethernet?

Гигабитный Ethernet также известен как «гигабит по меди» или 1000BaseT . Он представляет собой обычную версию Ethernet, работающую на скоростях до 1.000 мегабит в секунду, то есть в десять раз быстрее 100BaseT.

Основой гигабитного Ethernet является стандарт IEEE 802.3z , который был утвержден в 1998 году. Однако в июне 1999 года к нему вышло дополнение — стандарт гигабитного Ethernet по медной витой паре 1000BaseT . Именно этот стандарт смог вывести гигабитный Ethernet из серверных комнат и магистральных каналов, обеспечив его применение в тех же условиях, что и 10/100 Ethernet.

До появления 1000BaseT для гигабитного Ethernet необходимо было использовать волоконно-оптический или экранированный медный кабели, которые вряд ли можно назвать удобными для прокладки обычных локальных сетей. Данные кабели (1000BaseSX, 1000BaseLX и 1000BaseCX) и сегодня используются в специальных областях применения, поэтому мы не будем их рассматривать.

Группа гигабитного Ethernet 802.3z прекрасно справилась со своей работой — она выпустила универсальный стандарт, в десять раз превышающий скорость 100BaseT. 1000BaseT также является обратно совместимым с 10/100 оборудованием, он использует CAT-5 кабель (или более высокую категорию). Кстати, сегодня типичная сеть построена именно на базе кабеля пятой категории.

Нужен ли он нам?

В первой литературе о гигабитном Ethernet в качестве области применения нового стандарта указывался корпоративный рынок, и чаще всего — связь хранилищ данных. Поскольку гигабитный Ethernet обеспечивать в десять раз больший канал, чем привычный 100BaseT, естественным применением стандарта является соединение участков, требующих высокую пропускную способность. Это связь между серверами, коммутаторами и магистральными узлами. Именно там гигабитный Ethernet необходим, нужен и полезен.

По мере снижения цен на гигабитное оборудование область применения 1000BaseT расширилась до компьютеров «опытных пользователей» и рабочих групп, использующих «требовательные к пропускной способности приложения».

Поскольку потребности в передаче данных у большинства небольших сетей более чем скромные, вряд ли им когда-нибудь понадобится пропускная способность сети 1000BaseT. Давайте рассмотрим некоторые типичные области применения небольших сетей и оценим их потребность в гигабитном Ethernet.

Нужен ли он нам, продолжение

  • Передача больших файлов по сети

    Подобное применение характерно, скорее, для малых офисов, особенно в компаниях, занимающихся графическим дизайном, архитектурой или другим бизнесом, связанным с обработкой файлов размером в десятки-сотни мегабайт. Вы легко подсчитаете, что 100-мегабайтный файл будет передан по 100BaseT сети всего за восемь секунд [(100Мбайт x 8бит/байт)/ 100 Мбит/с]. В действительности же многие факторы ухудшают скорость передачи, так что ваш файл будет передаваться несколько дольше. Некоторые из этих факторов связаны с операционной системой, запущенными приложениями, количеством памяти на ваших компьютерах, скоростью процессора и возрастом. (Возраст системы влияет на скорость шин на материнской плате).

    Еще одним важным фактором является скорость сетевого оборудования, и переход на гигабитное оборудование позволяет устранить потенциальное узкое место и ускорить передачу больших объемов файлов. Многие подтвердят, что получение скоростей выше 50 Мбит/с на 100BaseT сети — дело отнюдь не тривиальное. Гигабитный же Ethernet сможет обеспечить пропускную способность выше 100 Мбит/с.

  • Сетевые устройства резервирования

    Можно рассматривать этот случай как вариант «больших файлов». Если ваша сеть настроена на резервирование всех компьютеров на один файловый сервер, то гигабитный Ethernet позволит вам ускорить этот процесс. Однако здесь существует и подводный камень — увеличение «трубы» пропускания к серверу может не привести к положительному эффекту, если сервер не будет успевать обрабатывать входящий поток данных (также это касается и носителя резервной информации).

    Для получения выгоды от высокоскоростной сети вам следует оснастить сервер большим объемом памяти и проводить резервирование на быстрый жесткий диск, а не ленту или CDROM. Как видим, к переходу на гигабитный Ethernet следует основательно подготовиться.

  • Приложения клиент-сервер

    Эта область применения опять же более характерна для сетей малого бизнеса, чем для домашних сетей. Между клиентом и сервером в подобных приложениях может передаваться большой объем данных. Подход прежний: вам необходимо проанализировать объем передающихся сетевых данных, чтобы узнать, сможет ли приложение «успеть» за увеличением пропускной способности сети и достаточно ли этих данных для нагрузки гигабитного Ethernet.

По правде говоря, мы считаем, что вряд ли большинство «строителей» домашних сетей найдут достаточно оснований для покупки гигабитного оборудования. В сетях малого бизнеса переход на гигабит может помочь, но мы рекомендуем сначала провести анализ количества передаваемых данных. С современным состоянием все понятно. Но что делать, если вы желаете учесть возможность будущей модернизации. Что вам нужно сделать сегодня, чтобы быть к ней готовым? В следующей части нашей статьи мы рассмотрим изменения, которые необходимо осуществить с самой дорогой, чаще всего и самой трудоемкой, части сети — кабелем .

Кабель для гигабитного Ethernet

Как мы уже упоминали во введении, одним из ключевых требований стандарта 1000BaseT является использования кабеля категории 5 (CAT 5) или выше. То есть гигабитный Ethernet может работать на существующей кабельной структуре 5 категории . Согласитесь, подобная возможность очень удобна. Как правило, все современные сети используют кабель пятой категории, если только ваша сеть не была установлена в 1996 году или раньше (стандарт был утвержден в 1995 году). Однако здесь существует несколько подводных камней.

  • Требуется четыре пары

    Как видно из этой статьи , 1000BaseT использует все четыре пары кабеля категории 5 (или выше) для создания четырех 250 Мбит/с каналов. (Также применяется и другая схема кодирования — пятиуровневая амплитудно-импульсная модуляция — чтобы оставаться в пределах частотного диапазона 100 МГц CAT5). В результате мы можем использовать для гигабитного Ethernet существующую кабельную структуру CAT 5.

    Поскольку 10/100BaseT использует только две пары CAT 5 из четырех, некоторые люди не подключали лишние пары при прокладке своих сетей. Пары использовались, к примеру, для телефона или для питания по Ethernet (POE). К счастью гигабитные сетевые карты и коммутаторы обладают достаточным интеллектом, чтобы откатиться на стандарт 100BaseT если все четыре пары будут недоступны. Поэтому ваша сеть в любом случае будет работать с гигабитными коммутаторами и сетевыми картами, но высокой скорости за уплаченные деньги вы не получите.

  • Не используйте дешевые разъемы

    Еще одна проблема самодеятельных сетевиков — плохая обжимка и дешевые настенные розетки. Они приводят к несоответствиям импеданса, в результате чего возникают обратные потери, а вследствие них и уменьшение пропускной способности. Конечно, вы можете попробовать поискать причину «в лоб», но все же вам лучше обзавестись сетевым тестером, который сможет обнаружить обратные потери и перекрестные помехи. Или просто смириться с низкой скоростью.

  • Ограничения по длине и топологии

    1000BaseT ограничен той же максимальной длиной сегмента, что и 10/100BaseT. Таким образом, максимальный диаметр сети составляет 200 метров (от одного компьютера до другого через один коммутатор). Что касается топологии 1000BaseT, то здесь работают те же правила, что и для 100BaseT, за исключением допустимости лишь одного повторителя на сегмент сети (или, если быть более точным, на один «полудуплексный домен коллизий»). Но поскольку гигабитный Ethernet не поддерживает полудуплексную передачу, вы можете забыть о последнем требовании. В общем если ваша сеть прекрасно себя чувствовала под 100BaseT, у вас не должно возникнуть проблем при переходе к гигабиту.

Кабель для гигабитного Ethernet, продолжение

Для прокладки новых сетей лучше всего использовать кабель CAT 5e . И хотя CAT 5 и CAT 5e оба пропускают частоту 100 МГц , кабель CAT5e производится с учетом дополнительных параметров, важных для лучшей передачи высокочастотных сигналов.

Просмотрите следующие документы Belden, чтобы подробнее узнать о спецификациях CAT 5e кабеля (на английском):

И хотя современный CAT 5 кабель будет прекрасно работать с 1000BaseT, вам лучше все же выбрать CAT 5e, если вы хотите гарантировать высокую пропускную способность. Если же вы колеблетесь, прикиньте стоимость кабеля CAT 5 и CAT 5e и действуйте по своим средствам.

Единственное, чего вам следует избегать — рекомендаций по покупке CAT 6 кабеля для гигабитного Ethernet. CAT 6 был добавлен в стандарт TIA-568 в июне 2002 года и он пропускает частоты до 200 МГц . Продавцы наверняка будут уговаривать вас купить именно более дорогую шестую категорию, но она вам понадобится, только если вы планируете построить сеть 10 Гбит/с Ethernet по медной проводке, что на данный момент вряд ли реально. А что насчет кабеля CAT 7? Забудьте про него!

Если же вы располагаете хорошей суммой, то лучше ее потратить на специалиста-сетевика , который обладает достаточным опытом прокладки гигабитных сетей . Специалист сможет грамотно проложить кабели или проверить вашу существующую сеть на работу с гигабитным Ethernet. При установке кабеля CAT 6 мы крайне рекомендуем обратиться за помощью к профессионалам, поскольку этот кабель оговаривает радиус сгиба и специальные качественные разъемы.

Гигабитное оборудование

В некотором роде вопрос «гигабит или нет» мог быть предметом спора год или пару лет назад. Если смотреть с точки зрения покупателя SOHO, переход от 10 к 10/100 Мбит/с уже случился. Новые компьютеры оснащаются 10/100 Ethernet портами, маршрутизаторы уже используют встроенные 10/100 коммутаторы, а не 10BaseT концентраторы. Однако подобная перемена не является следствием требований и пожеланий домашних «сетевиков». Они довольствуются существующим оборудованием.

За эти изменения нам следует благодарить корпоративных пользователей, которые покупают сегодня в массовых количествах только 10/100 оборудование, что позволяет опустить на него цены. Как только производители потребительского оборудования обнаружили, что использовать 10BaseT чипы по сравнению с 10/100 вариантам дороже , они долго не раздумывали.

Таким образом, вчерашняя архитектура на базе 10BaseT концентраторов незаметно перешла в современные 10/100 коммутируемые сети. Точно такой же переход мы испытаем и с 10/100 на 10/100/1000 Мбит/с. И хотя до переломного момента осталось еще год или два, переход уже начался и цены неуклонно продолжают свое падение вниз.

Все что вам нужно — купить гигабитную сетевую карту и гигабитный коммутатор. Давайте рассмотрим их чуть подробнее.

  • Сетевые карты

    Фирменные 32-битные PCI 10/100/1000BaseT сетевые карты типа Intel PRO1000 MT, Netgear GA302T и SMC SMC9552TX стоят в Интернете от $40 до $70. Продукты производителей второго эшелона дешевле примерно на $5. И хотя гигабитные сетевые карты приблизительно в два с половиной раза дороже средних 10/100 карт, вряд ли ваш кошелек вообще заметит какую-либо разницу, если только вы не закупаете их оптовыми партиями.

    Вы можете найти сетевые карты, поддерживающие не только 32-битную шину PCI, но и 64-битную, однако и стоят они дороже. Чего вы не увидите, так это CardBus адаптеров для ваших ноутбуков. По каким то причинам производители считают, что ноутбукам гигабитные сети вообще не нужны.

  • Коммутаторы

    А вот цена 10/100/1000 коммутаторов заставляет десять раз подумать о целесообразности перехода на гигабитный Ethernet. Хорошая новость: сегодня уже появились прозрачные гигабитные коммутаторы, которые стоят гораздо дешевле своих управляемых собратьев для корпоративного рынка.

    Простой четырехпортовый 10/100/1000 коммутатор Netgear GS104 можно купить меньше чем за $225. Если вы остановите свой выбор на менее известных фирмах типа TRENDnet TEG-S40TXE, то уменьшите стоимость до $150. Мало четырех портов — пожалуйста. Восьмипортовая версия Netgear GS108 обойдется вам примерно в $450, а TRENDnet TEG-S80TXD — около $280.

    Учитывая, что пятипортовый 10/100 коммутатор сегодня стоит всего $20, цены на гигабит кому-то покажутся слишком высокими. Но вспомните: еще совсем недавно вы могли купить только управляемые гигабитные коммутаторы стоимостью $100+ за порт. Цены идут в правильном направлении!

Придется ли менять компьютеры?

Откроем небольшой секрет гигабитного Ethernet: под Win98 или 98SE вы, скорее всего, не получите никакого преимущества от гигабитной скорости. И хотя с помощью редактирования реестра можно попытаться улучшить пропускную способность, вы все равно не получите существенного прироста производительности по сравнению с текущим 10/100 оборудованием.

Проблема кроется в TCP/IP стеке Win98, который не был разработан с учетом высокоскоростных сетей. У стека возникают проблемы даже с использованием 100BaseT сети, чего уж тогда говорить о гигабитной связи! Мы еще вернемся к этому вопросу во второй статье, но пока что вам следует рассматривать только Win2000 и WinXP для работы с гигабитным Ethernet.

Последним предложением мы отнюдь не подразумеваем, что только Windows 2000 и XP поддерживают гигабитные сетевые карты. Мы просто не проверяли производительность под другими операционными системами, так что воздержитесь, пожалуйста, от язвительных замечаний!

Если вы интересуетесь, придется ли вам выбрасывать старый добрый компьютер и покупать новый для использования гигабитного Ethernet, то наш ответ — «возможно». Судя по нашем практическому опыту, один герц «современных» процессоров равняется одному биту в секунду пропускной способности сети . Один из производителей гигабитного сетевого оборудования согласился с нами: любая машина с тактовой частотой 700 МГц или ниже не сможет в полной мере использовать пропускную способность гигабитного Ethernet. Так что даже с правильной операционной системой старым компьютерам гигабитный Ethernet — все равно, что мертвому припарки. Вы скорее увидите скорости 100-500 Мбит/с

Современный мир все больше входит в зависимость от объемов и потоков информации, идущей в различных направлениях по проводам и без них. Все началось достаточно давно и с более примитивных средств, чем сегодняшние достижения цифрового мира. Но описывать все виды и способы, при помощи которых один человек доносил нужные сведения до сознания другого, мы не намерены. В данной статье хочется предложить читателю рассказ о не так давно созданном и успешно развивающемся сейчас стандарте передачи цифровой информации, который называется Ethernet.

Рождение самой идеи и технологии Ethernet происходило в стенах корпорации Xerox PARC вместе с другими первыми разработками этого же направления. Официальной датой изобретения Ethernet стало 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe) составил докладную записку для главы PARC о потенциале технологии Ethernet. Однако запатентовали ее только через несколько лет.

В 1979 году Меткалф ушёл из Xerox и основал компанию 3Com, главной задачей которой стало продвижение компьютеров и локальных вычислительных сетей (ЛВС). Заручившись поддержкой таких именитых компаний как DEC, Intel и Xerox был разработан стандарт Ethernet (DIX). После официальной публикации 30 сентября 1980 года он начал соперничество с двумя крупными запатентованными технологиями - token ring и ARCNET, которые впоследствии были полностью вытеснены, из-за их меньшей эффективности и большей себестоимости, чем продукция для Ethernet.

Изначально по предложенным стандартам (Ethernet v1.0 и Ethernet v2.0) собирались использовать в качестве передающей среды коаксиальный кабель, но в дальнейшем пришлось отказаться от этой технологии и перейти на использование оптических кабелей и витой пары.

Основным преимуществом в начале развития технологии Ethernet стал метод управления доступом. Он подразумевает множественные соединения с контролем несущей и обнаружение коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных при этом равна 10 Мбит/с, размер пакета от 72 до 1526 байт, в нем же описаны методы кодирования данных. Предельное значение рабочих станций в одном разделяемом сегменте сети ограничено числом 1024, но возможны и другие более малые значения при установке более жестких ограничений к сегменту тонкого коаксиала. Но такое построение очень скоро стало неэффективным и на смену ему в 1995 году пришел стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с, а позже был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с. На данный момент уже в полной мере используется 10 Gigabit Ethernet IEEE 802.3ae, обладающий скоростью в 10 000 Мбит/с. Кроме того, уже имеем разработки направленные на достижение скорости в 100 000 Мбит/с 100 Gigabit Ethernet, но обо всем по порядку.

Очень важной позицией, лежащей в основе стандарта Ethernet, стал формат его кадра. Однако его вариантов существует довольно много. Вот некоторые из них:

    Variant I первенец и уже вышедший из применения.

    Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX (аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox) - наиболее распространена и используется по сей день. Часто используется непосредственно протоколом интернет.

    Novell - внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).

    Кадр IEEE 802.2 LLC.

    Кадр IEEE 802.2 LLC/SNAP.

    В качестве дополнения, Ethernet-кадр может содержать тег IEEE 802.1Q, для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности.

    Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.

Для различных типов кадра имеют и различные форматы и значения MTU.

Функциональные элементы технологии G igabit Ethernet

Отметим, что производители Ethernet-карт и других устройств в основном включают в свою продукцию поддержку нескольких предыдущих стандартов скоростей передачи данных. По умолчанию, используя автоопределение скорости и дуплексности, сами драйвера карты определяют оптимальный режим работы соединения между двумя устройствами, но, обычно, есть и ручной выбор. Так покупая устройство с портом Ethernet 10/100/1000, мы получаем возможность работать по технологиям 10BASE-T, 100BASE-TX, и 1000BASE-T.

Приведем хронологию модификаций Ethernet , разделив их по скоростям передачи.

Первые решения:

    Xerox Ethernet - оригинальная технология, скорость 3 Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.

    10BROAD36 - широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.

    1BASE5 - также известный, как StarLAN, стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

Более распространенные и оптимизированные для своего времени модификации 10 Мбит/с Ethernet:

    10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») - первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. IEEE использует коаксиальный кабель, с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.

    10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») - используется кабель RG-58, с максимальной длиной сегмента 200 метров. Для присоединения компьютеров друг к другу и подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet.

    StarLAN 10 - Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем, эволюционировал в стандарт 10BASE-T.

    10BASE-T, IEEE 802.3i - для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории 3 или категории 5. Максимальная длина сегмента 100 метров.

    FOIRL - (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км.

    10BASE-F, IEEE 802.3j - Основной термин для обозначения семейства 10 Mбит/с Eethernet-стандартов, использующих оптоволоконный кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.

    10BASE-FL (Fiber Link) - Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.

    10BASE-FB (Fiber Backbone) - Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.

  • 10BASE-FP (Fiber Passive) - Топология «пассивная звезда», в которой не нужны повторители – разработана, но никогда не применялась.

Самый распространенный и недорогой выбор на момент написания статьи Быстрый Ethernet (100 Мбит/с) (Fast Ethernet ):

    100BASE-T - Основной термин для обозначения одного из трёх стандартов 100 Мбит/с Ethernet, использующий в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя 100BASE-TX, 100BASE-T4 и 100BASE-T2.

    100BASE-TX, IEEE 802.3u - Развитие технологии 10BASE-T, используется топология «звезда», задействован кабель витая пара категории 5, в котором фактически используются 2 пары проводников, максимальная скорость передачи данных 100 Мбит/с.

    100BASE-T4 - 100 MБит/с Ethernet по кабелю категории 3. Задействованы все 4 пары. Сейчас практически не используется. Передача данных идёт в полудуплексном режиме.

    100BASE-T2 - Не используется. 100 Mбит/с Ethernet через кабель категории 3. Используется только 2 пары. Поддерживается полнодуплексный режим передачи, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении - 50 Mбит/с.

    100BASE-FX - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 400 метров в полудуплексном режиме (для гарантированного обнаружения коллизий) или 2 километра в полнодуплексном режиме по многомодовому оптическому волокну.

    100BASE-LX - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 15 километров в полнодуплексном режиме по паре одномодовых оптических волокон на длине волны 1310 нм.

    100BASE-LX WDM - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 15 километров в полнодуплексном режиме по одному одномодовому оптическому волокну на длине волны 1310 нм и 1550 нм. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской буквой A (1310) или B (1550). В паре могут работать только парные интерфейсы, с одной стороны передатчик на 1310 нм, а с другой на 1550 нм.

Gigabit Ethernet

    1000BASE-T, IEEE 802.3ab - Стандарт Ethernet 1 Гбит/с. Используется витая пара категории 5e или категории 6. В передаче данных участвуют все 4 пары. Скорость передачи данных - 250 Мбит/с по одной паре.

    1000BASE-TX, - Стандарт Ethernet 1 Гбит/с, использующий только витую пару категории 6. Передающие и принимающие пары разделены физически по две пары в каждом направлении, что существенно упрощает конструкцию приемопередающих устройств. Скорость передачи данных - 500 Мбит/с по одной паре. Практически не используется.

    1000Base-X - общий термин для обозначения технологии Гигабит Ethernet со сменными трансиверами GBIC или SFP.

    1000BASE-SX, IEEE 802.3z - 1 Гбит/с Ethernet технология использует лазеры с допустимой длиной излучения в пределах диапазона 770-860 нм, мощность излучения передатчика в пределах от -10 до 0 дБм при отношении ON/OFF (сигнал/нет сигнала) не меньше 9 дБ. Чувствительность приемника 17 дБм, насыщение приемника 0 дБм. Используя многомодовое волокно, дальность прохождения сигнала без повторителя до 550 метров.

    1000BASE-LX, IEEE 802.3z - 1 Гбит/с Ethernet технология использует лазеры с допустимой длиной излучения в пределах диапазона 1270-1355 нм, мощность излучения передатчика в пределах от 13,5 до 3 дБм, при отношении ON/OFF (есть сигнал/нет сигнала) не меньше 9 дБ. Чувствительность приемника 19 дБм, насыщение приемника 3 дБм. При использовании многомодового волокна дальность прохождения сигнала без повторителя до 550 метров. Оптимизирована для дальних расстояний, при использовании одномодового волокна (до 40 км).

    1000BASE-CX - Технология Гигабит Ethernet для коротких расстояний (до 25 метров), используется специальный медный кабель (Экранированная витая пара (STP)) с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T, и сейчас не используется.

    1000BASE-LH (Long Haul) - 1 Гбит/с Ethernet технология, использует одномодовый оптический кабель, дальность прохождения сигнала без повторителя до 100 километров.

Стандарт

Тип кабеля

Полоса пропускания (не хуже), МГц*Км

Макс. расстояние, м *

1000BASE-LX (лазерный диод 1300 нм)

Одномодовое волокно (9 мкм)

Многомодовое волокно
(50 мкм)

Многомодовое волокно
(62,5 мкм)

1000BASE-SX (лазерный диод 850 нм)

Многомодовое волокно
(50 мкм)

Многомодовое волокно
(62,5 мкм)

Многомодовое волокно
(62,5 мкм)

Экранированная витая пара STP
(150 ОМ)

* стандарты 1000BASE-SX и 1000BASE-LX предполагают наличие дуплексного режима
** Оборудование некоторых производителей может обеспечивать большее расстояние, оптические сегменты без промежуточных ретрансляторов/усилителей могут достигать 100 км.

Технические характеристики стандартов 1000Base-X

10 Gigabit Ethernet

Еще достаточно дорогой, но вполне востребованный, новый стандарт 10 Гигабит Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3a и должен войти в следующую ревизию стандарта IEEE 802.3.

    10GBASE-CX4 - Технология 10 Гигабит Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.

    10GBASE-SR - Технология 10 Гигабит Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое оптоволокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового оптоволокна (2000 МГц/км).

    10GBASE-LX4 - использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну. Также поддерживает расстояния до 10 километров при использовании одномодового оптоволокна.

    10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.

    10GBASE-SW, 10GBASE-LW и 10GBASE-EW - Эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.

    10GBASE-T, IEEE 802.3an-2006 - принят в июне 2006 года после 4 лет разработки. Использует экранированную витую пару. Расстояния - до 100 метров.

И наконец, что мы знаем про 100-Gigabit Ethernet (100-GE), еще достаточно сырую, но вполне востребованную технологию.

В апреле 2007 года, после собрания комитета IEEE 802.3 в Оттаве, исследовательской группой Higher Speed Study Group (HSSG) было принято мнение о технических подходах в формировании оптических и медных каналов 100-GE. На данное время окончательно сформирована рабочая группа 802.3ba по разработке спецификации 100-GE.

Как и в предыдущих разработках, стандарт 100-GE будет учитывать не только экономические и технические возможности его осуществления, но и их обратную совместимость с имеющимися системами. На данное время потребность в таких скоростях неоспоримо доказана ведущими компаниями. Постоянно растущие объемы персонализированного контента, в том числе при доставке видео с порталов типа YouTube и других ресурсов, применяющих технологии IPTV и HDTV. Нужно упомянуть также видео по требованию. Все это определяет потребность в 100 Gigabit Ethernet операторов и сервис-провайдеров.

Но на фоне большого выбора старых и перспективно новых технологических подходов в рамках группы Ethernet мы хотим более подробно остановиться на технологии, которая сегодня только приобретает полноценную массовость использования в связи с понижением стоимости ее компонентов. Gigabit Ethernet может полноценно обеспечить работу таких приложений, как потоковое видео, видеоконференции, передача сложных изображений предъявляющих повышенные требования к пропускной способности канал. Преимущества повышения скоростей передачи в корпоративных и домашних сетях становятся все более бесспорным, с падением цен на оборудование такого класса.

Сейчас получил максимальную популярность стандарт IEEE. Принятый в июне 1998 года, он был утвержден как IEEE 802.3z. Но поначалу в качестве среды передачи использовался только оптический кабель. С утверждением в течение последующего года дополнения стандарта 802.3ab средой передачи стала неэкранированная витая пара пятой категории.

Gigabit Ethernet является прямым потомком Ethernet и Fast Ethernet, хорошо зарекомендовавших себя за почти двадцатилетнюю историю, сохранив их надежность и перспективность использования. Наряду с предусмотренной обратной совместимостью с предыдущими решениями (кабельная структура остается неизменной) он обеспечивает теоретическую пропускную способность в 1000 Мбит/сек, что приблизительно равно 120 Мб в секунду. Стоит отметить, что такие возможности практически равны скорости 32-битной шины PCI 33 МГц. Именно поэтому гигабитные адаптеры выпускаются как для 32-битной PCI (33 и 66 МГц), так и для 64-битной шины. Наряду с таким увеличением скорости Gigabit Ethernet унаследовал все предыдущие особенности Ethernet, такие как формат кадров, технологию CSMA/CD (чувствительный к передаче множественный доступ с обнаружением коллизий), полный дуплекс и т.д. Хотя высокие скорости внесли и свои нововведения, но именно в наследовании старых стандартов состоит огромное преимущество и популярность Gigabit Ethernet. Конечно, сейчас предложены и другие решения, такие как ATM и Fibre Channel, но здесь сразу теряется главное преимущество для конечного потребителя. Переход на другую технологию ведет за собой массовую переделку и переоборудование сетей предприятия, тогда как Gigabit Ethernet позволит плавно наращивать скорость и не изменять кабельное хозяйство. Такой подход и позволил Ethernet-технологии занять доминирующее место в области сетевых технологий и завоевать более 80 процентов мирового рынка передачи информации.

Структура построения сети Ethernet с плавным переходам на более высокие скорости передачи данных.

Изначально все стандарты Ethernet разрабатывались с использованием в качестве среды передачи только оптического кабеля - так и Gigabit Ethernet получил интерфейс 1000BASE-X. Он основывается на стандарте физического уровня Fibre Channel (это технология взаимодействия рабочих станций, устройств хранения данных и периферийных узлов). Так как эта технология уже была одобрена ранее, такое заимствование сильно сократило время на разработку стандарта Gigabit Ethernet. 1000BASE-X

Нас, как и простого обывателя, больше заинтересовал 1000Base-CX в виду его работы на экранированной витой паре (STP «twinax») на короткие расстояния и 1000BASE-T для неэкранированной витой пары категории 5. Главным отличием 1000BASE-T от Fast Ethernet 100BASE-TX стало то, что используются все четыре пары (в 100BASE-TX использовались только две). Каждая пара при этом может передавать данные со скоростью 250 Мбит/сек. Стандарт обеспечивает дуплексную передачу, причем поток по каждой паре обеспечивается в двух направлениях одновременно. В связи с сильными помехами при такой передаче технически реализовать гигабитную передачу по витой паре было намного сложнее, чем в 100BASE-TX, что потребовало разработки специальной скремблированной помехоустойчивой передачи, а также интеллектуального узла распознавания и восстановления сигнала на приеме. В качестве метода кодирования в стандарте 1000BASE-T было использовано 5-уровневое импульсно-амплитудное кодирование PAM-5.

Критерии по выбору кабеля тоже стали более жесткими. Для уменьшения наводок, однонаправленной передачи, возвратных потерь, задержек и фазового сдвига, была принята к использованию категория 5e для неэкранированной витой пары.

Обжим кабеля для 1000BASE-T производится по одной из следующих схем:

Прямой (straight-through) кабель.

Перекрестный (crossover) кабель.

Схемы обжима кабеля для 1000BASE-T

Нововведения коснулись и уровня MAC-стандарта 1000BASE-T. В Ethernet-сетях максимальное расстояние между станциями (коллизионный домен) определяется исходя из минимального размера кадра (в стандарте Ethernet IEEE 802.3 он равнялся 64 байтам). Максимальная длина сегмента должна быть такой, чтобы передающая станция могла обнаружить коллизию до окончания передачи кадра (сигнал должен успеть пройти в другой конец сегмента и вернуться обратно). Соответственно, при увеличении скорости передачи нужно либо увеличивать размер кадра, тем самым увеличивая минимальное время на передачу кадра, либо уменьшать диаметр коллизионного домена.

При переходе к Fast Ethernet воспользовались вторым вариантом и сократили диаметр сегмента. В Gigabit Ethernet это было неприемлемо. Ведь в этом случае стандарт, наследовавший такие составляющие Fast Ethernet, как минимальный размер кадра, CSMA/CD и время обнаружения коллизии (time slot), сможет работать в коллизионных доменах диаметром не более 20 метров. Поэтому было предложено увеличить время на передачу минимального кадра. Учитывая, что для совместимости с предыдущими Ethernet минимальный размер кадра был оставлен прежним - 64 байта, а к кадру добавилось дополнительное поле carrier extension (расширение носителя), которое дополняет кадр до 512 байт, но поле не добавляется в случае, когда размер кадра больше 512 байт. Таким образом, результирующий минимальный размер кадра получился равным 512 байтам, время на обнаружение коллизии возросло, и диаметр сегмента увеличился до тех же 200 метров (в случае 1000BASE-T). Символы в поле carrier extension не несут смысловой нагрузки, контрольная сумма для них не вычисляется. При приеме кадра это поле отбрасывается еще на уровне MAC, поэтому вышележащие уровни продолжают работать с минимальными кадрами длиной 64 байта.

Но и тут возникли подводные камни. Хоть расширение носителя и позволило сохранить совместимость с предыдущими стандартами, оно привело к неоправданной трате полосы пропускания. Потери могут достигать 448 байт (512-64) на кадр в случае коротких кадров. Поэтому стандарт 1000BASE-T был модернизирован - ввели понятие Packet Bursting (пакетная перегруженность). Она позволяет намного эффектней использовать поле расширения. А работает это следующим образом: если у адаптера или коммутатора есть несколько небольших кадров, требующих отправки, то первый из них отправляется стандартным образом, с добавлением поля расширения до 512 байт. А все последующие отправляются в оригинальном виде (без поля расширения), с минимальным интервалом между ними в 96 бит. И, что самое главное, этот межкадровый интервал заполняется символами расширения носителя. Это происходит до тех пор, пока суммарный размер отправляемых кадров не достигнет предела 1518 байт. Таким образом, среда не замолкает на всем протяжении передачи малых кадров, поэтому коллизия может возникнуть только на первом этапе, при передаче первого правильного малого кадра с полем расширения носителя (размером 512 байт). Этот механизм позволяет существенно повысить производительность сети, особенно при больших нагрузках, за счет уменьшения вероятности возникновения коллизий.

Но и этого оказалось мало. Сначала Gigabit Ethernet поддерживал только стандартные размеры кадров Ethernet - от минимального 64 (дополняемых до 512) до максимального 1518 байт. Из них 18 байт занимает стандартный служебный заголовок, а для данных остается от 46 до 1500 байт соответственно. Но даже пакет данных размером 1500 байт слишком мал в случае гигабитной сети. Особенно для серверов, передающих большие объемы данных. Давайте немного посчитаем. Для передачи файла размером 1 гигабайт по незагруженной Fast Ethernet сети, сервер обрабатывает 8200 пакетов/сек и затрачивает на это минимум 11 секунд. В этом случае только на обработку прерываний у компьютера мощностью 200 MIPS уйдет около 10 процентов времени. Ведь центральный процессор должен обработать (посчитать контрольную сумму, передать данные в память) каждый пришедший пакет.

Скорость

10 Мбит/сек

100 Мбит/сек

1000 Мбит/сек

Размер кадра

Кадры/сек

Скорость передачи данных, Мбит/сек

Интервал между кадрами, мкс

Характеристики передачи сетей Ethernet.

В гигабитных сетях ситуация еще печальней - нагрузка на процессор возрастает примерно на порядок из-за сокращения временного интервала между кадрами и соответственно запросами на прерывания к процессору. Из таблицы 1 видно, что даже в наилучших условиях (использование кадров максимального размера) кадры отстоят друг от друга на временной интервал, не превышающий 12 мкс. В случае использования кадров меньшего размера этот временной интервал только уменьшается. Поэтому в гигабитных сетях узким местом, как ни странно, стал именно этап обработки кадров процессором. Поэтому на заре становления Gigabit Ethernet фактические скорости передачи были далеки от теоретического максимума - процессоры просто не справлялись с нагрузкой.

Очевидным выходом из сложившейся ситуации является следующее:

    увеличение временного интервала между кадрами;

    перекладывание части нагрузки обработки кадров с центрального процессора на сам сетевой адаптер.

В настоящее время реализованы оба метода. В 1999 году было предложено увеличить размер пакета. Такие пакеты получили название гига-кадры (Jumbo Frames), и их размер мог быть от 1518 до 9018 байт (в настоящее время оборудование от некоторых производителей поддерживает и большие размеры гига-кадров). Jumbo Frames позволили уменьшить нагрузку на центральный процессор до 6 раз (пропорционально своему размеру) и, таким образом, значительно повысить производительность. Например, максимальный пакет Jumbo Frame в 9018 байт, кроме 18-байтового заголовка, содержит 9000 байт под данные, что соответствует шести стандартным максимальным кадрам Ethernet. Выигрыш в производительности достигается не из-за избавления от нескольких служебных заголовков (трафик от их передачи не превышает нескольких процентов общей пропускной способности), а за счет уменьшения времени на обработку такого кадра. Точнее, время на обработку кадра осталось прежним, но вместо нескольких небольших кадров, каждый из которых потребовал бы для себя N тактов процессора и одно прерывание, мы обрабатываем только один, больший кадр.

Довольно быстро развивающийся мир скорости обработки информации предоставляет все более быстрые и недорогие решения по использованию специальных аппаратных средств, для снятия части нагрузки по обработке трафика с центрального процессора. Используется и технология буферизации, обеспечивающая прерывание процессора для обработки нескольких кадров сразу. На данное время технология Gigabit Ethernet становится все более доступной для использования в домашних условиях, что напрямую заинтересует простого пользователя. Более быстрый доступ к домашним ресурсам обеспечит качественный просмотр видео большого разрешения, займет меньше времени для перераспределения информации и, наконец, позволит вживую кодировать видеопотоки на сетевые диски.

При подготовке статьи использовались метериалы ресурсов http://www.ixbt.com/ и http://www.wikipedia.org/ .

Статья прочитана 15510 раз(а)

Подписаться на наши каналы

Я не очень торопился перевести свою домашнюю сеть со скорости 100 Мбит/с на 1 Гбит/с, что для меня довольно странно, поскольку я передаю по сети большое количество файлов. Однако когда я трачу деньги на апгрейд компьютера или инфраструктуры, я считаю, что должен сразу же получить прирост производительности в приложениях и играх, которые я запускаю. Многие пользователи любят потешить себя новой видеокартой, центральным процессором и каким-нибудь гаджетом. Однако по каким-то причинам сетевое оборудование не привлекает такого энтузиазма. Действительно, сложно вложить заработанные деньги в сетевую инфраструктуру вместо очередного технологического подарка на день рождения.

Однако требования по пропускной способности у меня очень высоки, и в один момент я понял, что инфраструктуры на 100 Мбит/с уже не хватает. У всех моих домашних компьютеров уже установлены интегрированные адаптеры на 1 Гбит/с (на материнских платах), поэтому я решил взять прайс-лист ближайшей компьютерной фирмы и посмотреть, что мне потребуется для перевода всей сетевой инфраструктуры на 1 Гбит/с.

Нет, домашняя гигабитная сеть вовсе не такая сложная.

Я купил и установил всё оборудование. Я помню, что раньше на копирование большого файла по 100-Мбит/с сети уходило около полутора минут. После апгрейда на 1 Гбит/с тот же файл стал копироваться за 40 секунд. Прирост производительности приятно порадовал, но всё же я не получил десятикратного превосходства, которое можно было ожидать из сравнения пропускной способности 100 Мбит/с и 1 Гбит/с старой и новой сетей.

В чём причина?

Для гигабитной сети все её части должны поддерживать 1 Гбит/с. Например, если у вас установлены гигабитные сетевые карты и соответствующие кабели, но концентратор/коммутатор поддерживает всего 100 Мбит/с, то и вся сеть будет работать на 100 Мбит/с.

Первое требование - сетевой контроллер. Лучше всего, если каждый компьютер в сети будет оснащён гигабитным сетевым адаптером (отдельным или интегрированным на материнскую плату). Это требование удовлетворить проще всего, поскольку большинство производителей материнских плат пару последних лет интегрируют гигабитные сетевые контроллеры.

Второе требование - сетевая карта тоже должна поддерживать 1 Гбит/с. Есть распространённое заблуждение, что для гигабитных сетей требуется кабель категории 5e, но на самом деле даже старый кабель Cat 5 поддерживает 1 Гбит/с. Впрочем, кабели Cat 5e обладают лучшими характеристиками, поэтому они будут более оптимальным решением для гигабитных сетей, особенно если длина у кабелей будет приличная. Впрочем, кабели Cat 5e сегодня всё равно самые дешёвые, поскольку старый стандарт Cat 5 уже устарел. Новые и более дорогие кабели Cat 6 обладают ещё лучшими характеристиками для гигабитных сетей. Мы сравним производительность кабелей Cat 5e против Cat 6 чуть позже в нашей статье.

Третий и, наверное, самый дорогой компонент в гигабитной сети - это концентратор/коммутатор с поддержкой 1 Гбит/с. Конечно, лучше использовать коммутатор (возможно, в паре с маршрутизатором), поскольку концентратор или хаб - не самое интеллектуальное устройство, просто транслирующее все сетевые данные по всем доступным портам, что приводит к появлению большого числа коллизий и замедляет производительность сети. Если вам нужна высокая производительность, то без гигабитного коммутатора не обойтись, поскольку он перенаправляет сетевые данные только на нужный порт, что эффективно увеличивает скорость работы сети по с равнению с концентратором. Маршрутизатор обычно содержит встроенный коммутатор (с несколькими портами LAN), а также позволяет подключать вашу домашнюю сеть к Интернету. Большинство домашних пользователей понимают преимущества маршрутизатора, поэтому гигабитный маршрутизатор - вариант вполне привлекательный.



СОДЕРЖАНИЕ
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png