И Radeon HD 6870 были выпущены взамен решений серии AMD Radeon HD 57** значительно переработанными и более энергоэффективными, что позволило данной продукции стать гораздо более выгодным приобретением, нежели видеокарты от конкурента серии NVIDIA GeForce 400. Несмотря на появление новых видеокарт NVIDIA GeForce 500, которые уже более легко конкурируют с видеокартами AMD Radeon HD 6850 и Radeon HD 6870 производители продолжают выпускать все новые и новые решения на базе данных платформ.
Еще зимой текущего года был произведен анонс видеокарты HIS Radeon HD 6870 IceQ X TurboX, которая кроме традиционного заводского разгона для серии Turbo, смогла похвастаться наличием уникальной системы охлаждения IceQ X. Данная система охлаждения не новая и уже знакома нашим постоянным читателям по нашим предыдущим обзорам видеокарт от Hightech Information System Limited (HIS).

Прежде чем перейти к непосредственному рассмотрению видеокарты HIS Radeon HD 6870 IceQ X TurboX, нам хотелось бы более подробно остановиться на линейке графических решений - AMD Radeon HD 6850 и Radeon HD 6870. Связано это с тем, что многие пользователи приобретая графические решения данной серии заблуждаются относительно их уровня производительности. В частности, компания AMD пошла на хитрый ход. Выпустила видеокарты среднего ценового диапазона для замены продуктов из линейки AMD Radeon HD 57**, а обозначила ее как AMD Radeon HD 68**. Это необходимо учитывать, так как заменять видеокарту серии AMD Radeon HD 58** на продукт данной серии врятли имеет смысл. Вы либо получите меньшую производительность, либо аналогичную.

Видеокарты серии AMD Radeon HD 6800 хоть и относятся к среднему ценовому сегменту, в референсном исполнении их длина достигает 25 сантиметров, поэтому установить их в тесные корпуса ITX не получится. Многие пользователи после приобретения видеокарты данной серии начинают жаловаться на низкую производительность и связывают ее с наличием шины PCI-Exp 2.0 вместо PCI-Exp 2.1, которую поддерживает видеокарта. На самом деле, никакой здесь взаимосвязи нет. Данные интерфейсы обратно совместимы и применение любой из них не ограничивает конечную производительность вашей видеокарты. Низкий уровень производительности может быть связан с наличием медленного процессора, который не может адекватно нагрузить вашу видеокарту.

Картинка кликабельна --

Вторым ключевым моментом при приобретении видеокарт серии AMD Radeon HD 6800 является мощность блока питания. На большинстве сайтов рекомендуют приобретать блок питания мощностью не менее 500 ватт в случае с одиночной видеокартой и 720 ватт в случае двух видеокарт в режиме CrossFire. Мы считаем, что для одной видеокарты блока питания мощностью 450 ватт стандарта ATX 2.xx вполне достаточно, даже в режиме разгона. Естественно, многое еще зависит от имеющихся у вас других комплектующих - процессора, приводов, жестких дисков и т.д.

Третьим вопросом, которым задаются наши пользователи в магазине компьютерных комплектующих, является решение выбора между видеокартами AMD Radeon HD 6850 и Radeon HD 6870. Естественно, старшая видеокарта стоит дороже, но ключевой вопрос состоит в том, насколько данная стоимость сопоставима с производительностью. Мы можем с уверенностью сказать, что разница в уровнях производительности двух данных видеокарт не превышает пятнадцати процентов. Чаще всего данная цифра колеблется в районе 10%. Если же видеокарту AMD Radeon HD 6850 разогнать в домашних условиях, то ее уровень производительности будет сопоставим с производительностью старшей видеокарты. Это будет оправданно, если вам попадется удачный экземпляр. Так как младшая видеокарта имеет урезанное ядро Barts Pro, а старшая видеокарта полноценное ядро Barts XT.

Говоря о разгоне видеокарт данной серии следует остановиться на том, что видеокарты имеют разные частоты в 2D и 3D режиме. Переключение из одного режима в другой может происходить и без каких-либо объективных причин, - это особенность видеокарты. Естественно, мы не имеем в виду сбрасывание частот с 3D уровня на 2D.

Опыт показывает, что разгонять имеет смысл только младшие видеокарты AMD Radeon HD 6850, разгон видеокарты Radeon HD 6870 не дает адекватного прироста производительности из-за несущественного разгонного потенциала. Тем не менее, частоту в 1 Ггц по ядру берет большинство видеокарт Radeon HD 6870, но из-за высокой номинальной частоты равной 900 Мгц, данный разгон не превышает 10% от номинальных значений.

Картинка кликабельна --

Разгон видеокарт данной серии следует осуществлять либо традиционными способами с помощью закладки OverDrive в панели драйвера, либо через MSI Afterburner. Последняя программа предпочтительнее, так как снятие ограничения в разгоне осуществляется достаточно просто, путем настройки файла MSIAfterburner.cfg, где указываете UnofficialOverclockingMode = 1 для отключения контроля за разгоном.

Поклонники разгона видеокарт через официальные драйвера также получили возможность снятия ограничений разгона. Чаще всего рекомендуется перепрошивка видеокарты БИОСом от MSI Cyclone Power Edition. Естественно, метод этот достаточно рискованный в плане необходимости восстановления БИОСа видеокарты "вслепую", поэтому все риски при выполнении данной процедуры пользователь берет на себя.

Ключевым и наиболее интересным моментом для оверклоккера является возможность софтвольтмода на видеокарте. Видеокарты серии AMD Radeon HD 6850 и Radeon HD 6870 подерживает софтвольтмод. Как правило, он выполняется через туже программу MSI Afterburner. При этом следует отметить, что данной возможностью не обладают видеокарты от компании PowerColor и Gigabyte, поэтому оверклоккерам лучше обходить их стороной.

В ходе разгона видеокарты и осуществления софтвольтмода у пользователей возникает традиционный вопрос: "До какого предела можно осуществлять повышение частот и напряжений?". По поводу повышения частот ответ вполне стандартен - необходимо повышать до максимально возможных стабильных частот. Видеокарты очень редко выгорают в результате установленных высоких частот, чаще всего проблемы возникают в результате подачи высокого напряжения на ядро.

Итак, номинальными напряжениями у видеокарт AMD Radeon HD 6850 и Radeon HD 6870 являются 1,148 в и 1,172 в соответственно. Вторая видеокарта трудится на более высоких частотах, поэтому работает при более высоком рабочем напряжении. Максимальный уровень выставляемого напряжения в ходе разгона должен полностью зависит от ваших условий работы видеокарты и конкретного экземпляра. В большинстве случаев, следует ограничиться числом 1,275 вольт, так как дальнейшее повышение редко приводит к существенному повышению рабочих частот. Чаще всего это будет наблюдаться только при разгоне видеокарты в условиях водяного охлаждения или других "изощренных способов". На воздухе выше 1,275 вольт идти не следует, а, наоборот, лучше постоянно контролировать рабочие температуры своей видеокарты.

Картинка кликабельна --

В ходе осуществления любого софтвольтмода будь-то на видеокартах AMD Radeon HD 6850/Radeon HD 6870 или на других решениях следует понимать тот факт, что программные значения напряжения не всегда будут соответствовать реальным. Если имеется возможность лучше на точках замера напряжений контролировать измененные напряжения. Наши тесты показали, что выставление напряжения 1,275 вольт через программы реально дает напряжение 1,3 вольта на ядро. Это встречается не на всех видеокартах, но все-таки встречается и может привести к так называемой "деградации видеокарты".

Понятие деградация видеокарты не ново в оверклоккерском мире и достаточно давно обсуждается в нем. Проявляется оно при чрезмерном разгоне видеокарты, а именно, при подаче чрезмерного напряжения на ядро. Деградация видеокарты приводит к постепенному снижению ее разгонного потенциала. Как правило, процесс необратимый, но его можно всегда остановить - установив номинальные напряжения. Среди пользователей несколько лет уже обсуждается вопрос о том, с чем связано данное явление. Причин здесь может быть только две - либо деградирует само ядро, либо система питания. Естественно, нельзя исключить и сочетанное взаимодействие данных факторов.

Опыт работ среди оверклоккеров на предыдущих поколениях видеокарт показывает, что наиболее часто причина кроется в системе питания видеокарты. Чрезмерное повышение напряжения приводит к повышенному энергопотреблению, на которое бывает не рассчитана распаянная система питания, что приводит к постепенному снижению мощностных показателей цепи с периодическими просадками напряжения. Косвенно это подтверждается тем, что банальная замена конденсаторов на деградированной видеокарте на новые, позволяет увеличить ее разгонный потенциал. Учитывая все это, мы не рекомендуем выходить за рамки реальных 1,275 вольт подаваемых на ядро у видеокарт обсуждаемой серии.

Картинка кликабельна --

Попутно хочется предостеречь обладателей видеокарт от компании ASUS. Продукция данной компании пользуется популярностью в нашей стране, поэтому многие вначале прицениваются к ней и если разница в стоимости устраивает, приобретают ее. Разгон видеокарт от ASUS осуществляется утилитой ASUS Smart Doctor, которой комплектуются видеокарты данного производителя. Особенностью данной программы является то, что она показывает значения напряжения примерно на 0,1 вольт ниже действительных. Тем самым, выставив указанные нами 1,275 вольт, вы рискуете на ядре получить 1,375 вольт и благополучно вывести ее из строя при первом же тестировании.

Многие владельцы видеокарт AMD Radeon HD 6850 и Radeon HD 6870 начинают сдавать их по гарантии в связи с неработоспобностью нижнего слота DVI через переходник DVI-to-VGA. На самом деле никакого "криминала" здесь нет и это встречается на всех видеокартах. Для данного переходника предназначен верхний DVI-I порт, а нижний порт не работает с данными переходниками, но полностью работоспособен при подключении обычного DVI кабеля.

Наиболее реальной технической неисправностью видеокарт AMD Radeon HD 6850 и Radeon HD 6870 может явиться "черный экран", который будет сопровождать пользователя во время прохождения игр. Как правило, восстановить изображение помогает только перезагрузка через кнопку Reset. Причины данного состояния может заключаться в двух причинах:
- низкое напряжение на линии 12 воль блока питания,
- бракованный контроллер напряжения на видеокарте.

В первом случае необходимо менять блок питания, то есть случай по видеокарте не гарантийный, во втором случае, необходимо нести видеокарту по гарантии. Главная проблема - диагностика причины неисправности.

Картинка кликабельна --

Для диагностики необходимо выполнить простую манипуляцию. После подачи нагрузки на процессор и видеокарту берете мультиметр и на Molex (четырехштырьковом коннекторе) блока питания измеряете напряжение по линии 12 вольт. 12 вольт подается на желтый провод и ближайший к нему черный. Если данная цифра уходит далеко 11,7 вольт, то точно необходимо менять блок питания. Если же значение болтается в районе 12 вольт, то неисправен контроллер питания видеокарты и ее необходимо сдать по гарантии.

Перед сдачей не забудьте убрать все признаки модификаций, если вы перепрашивали БИОС и т.д. Наиболее часто проблемы с контроллером напряжения встречаются у видеокарт Gigabyte GV-R685OC-1GD, но от брака ни одно решение не застраховано.

Если же гарантия прошла, а денег на новую видеокарту нет, то решение проблемы - снизить частоты на проблемном компоненте. Практика показала, что при проблемах с контроллером страдает видеопамять, и снижение ее рабочей частоты позволяет забыть о проблеме "черного экрана".

В редких случаях пользователи жалуются на свист со стороны видеокарты при игре в игры. Данная проблема бывает связана с одной причиной - низким качеством вашего блока питания, который просаживает напряжение по линии 12 вольт. Если все-таки у вас действительно "не удачный" экземпляр, то возьмите в руки радиотехнический лак и промажьте им свистящую катушку - это позволит решить проблему.

Заключение

Видеокарты серии AMD Radeon HD 6850 и Radeon HD 6870 нельзя назвать проблемными. Стабильная работа в течение длительного времени - это их настоящая характеристика. Некоторые проблемы могут быть при установке драйверов к данным видеокартам, но предварительная полная чистка ранее установленных драйверов позволит решить данную проблему раз и навсегда.


Описывающую Radeon HD 6850/6870, которые ранее имели кодовое обозначение Barts.

Поэтому сегодня мы наверстываем упущенное и предлагаем вниманию наших читателей уже две практические части, где мы детально изучим новинки AMD.

Как обычно, в этой, второй части, мы изучим сами видеокарты, а также познакомимся с результатами синтетических тестов.

  • GPU : Radeon HD 6850 (Barts)
  • Интерфейс : PCI-Express x16
  • : 775/775 МГц (номинал - 775/775 МГц)
  • : 1000 (4000) МГц (номинал - 1000 (4000) МГц)
  • Ширина шины обмена с памятью : 256 бит
  • Число вершинных процессоров:
  • : 960
  • Число текстурных процессоров : 48 (BLF/TLF)
  • Число ROPs : 32
  • Размеры : 250×100×33 мм (последняя величина - максимальная толщина видеокарты)
  • Цвет текстолита : черный
  • RAMDACs/TMDS : интегрированы в GPU
  • Выходные гнезда
  • VIVO : нет
  • TV-out : не выведен
  • : CrossFire (Hardware)
  • GPU : Radeon HD 6870 (Barts)
  • Интерфейс : PCI-Express x16
  • Частоты работы GPU (ROPs/Shaders) : 900/900 МГц (номинал - 900/900 МГц)
  • Частоты работы памяти (физическая (эффективная)) : 1050 (4200) МГц (номинал - 1050 (4200) МГц)
  • Ширина шины обмена с памятью : 256 бит
  • Число вершинных процессоров:
  • Число пиксельных процессоров:
  • Число универсальных процессоров : 1120
  • Число текстурных процессоров : 56 (BLF/TLF)
  • Число ROPs : 32
  • Размеры : 270×100×33 мм (последняя величина - максимальная толщина видеокарты)
  • Цвет текстолита : черный
  • RAMDACs/TMDS : интегрированы в GPU
  • Выходные гнезда : 2×DVI (Dual-Link/HDMI), 2×mini-Display Port, 1×HDMI
  • VIVO : нет
  • TV-out : не выведен
  • Поддержка многопроцессорной работы : CrossFire (Hardware)
AMD Radeon HD 6850 / 6870 1024MB 256-битной GDDR5, PCI-E
Каждая карта имеет по 1024 МБ памяти GDDR5 SDRAM, размещенной в восьми микросхемах на лицевой сторонe PCB.

Есть смысл сказать, что обе карты требуют дополнительного питания, причем 6870 - двумя 6-пиновыми разъемами, а 6850 - одним разъемом.

О системах охлаждения.

AMD Radeon HD 6850 1024MB 256-битной GDDR5, PCI-E

Прекрасно видно, что СО состоит из двух частей - центрального кулера и радиаторов для охлаждения памяти, которые работают как бы сами по себе, а центральное устройство охлаждает лишь ядро.

Прибор цилиндрического типа, когда на одном конце закреплена цилиндрический вентилятор, прогоняющая воздух через радиатор, установленный над ядром. Несмотря на медную подошву, сам радиатор небольшой. В целом устройство довольно тихое, и явно говорит о том, что нагрев ядра не столь велик.

AMD Radeon HD 6870 1024MB 256-битной GDDR5, PCI-E

Аналогичное по принципу действия устройство, но отличия в том, что центральный кулер уже охлаждает как ядро, так и микросхемы памяти, поэтому радиатор усилен (увеличен в размерах). Да и цилиндрический вентилятор стоит помощнее. Однако все равно в целом устройство малошумное.

Мы провели исследование температурного режима с помощью утилиты EVGA Precision (автор А. Николайчук AKA Unwinder) и получили следующие результаты:

AMD Radeon HD 6850 1024MB 256-битной GDDR5, PCI-E

AMD Radeon HD 6870 1024MB 256-битной GDDR5, PCI-E

Как мы видим, обе СО работают одинаково эффективно, и нагрев не превышает 80-81 градус, что очень неплохо для подобного рода современных акселераторов.

Максимальное энергопотребление карт под нагрузкой: 6850 - 150 Вт, а 6870 - 180 Вт.

Комплектация. Учитывая, что референс-образцы никогда не имеют комплектаций, мы этот вопрос опустим.

Установка и драйверы

Конфигурация тестового стенда:

  • Компьютер на базе Intel Core I7 CPU 975 (Socket 1366)
    • процессор Intel Core I7 CPU 975 (3340 МГц);
    • системная плата Asus P6T Deluxe на чипсете Intel X58;
    • оперативная память 6 ГБ DDR3 SDRAM Corsair 1600MHz;
    • жесткий диск WD Caviar SE WD1600JD 160 ГБ SATA;
    • блок питания Tagan TG900-BZ 900W.
  • операционная система Windows 7 64bit; DirectX 11;
  • монитор Dell 3007WFP (30″);
  • драйверы ATI версии Catalyst 10.10; Nvidia версии 262.99/260.99.

VSync отключен.

Синтетические тесты

Используемые нами пакеты синтетических тестов можно скачать здесь:

  • D3D RightMark Beta 4 (1050) с описанием на сайте .
  • D3D RightMark Pixel Shading 2 и D3D RightMark Pixel Shading 3 - тесты пиксельных шейдеров версий 2.0 и 3.0 ссылка .
  • RightMark3D 2.0 с кратким описанием: , .

Синтетические тесты проводились на следующих видеокартах:

  • Radeon HD 6870 HD 6870 )
  • Radeon HD 6850 со стандартными параметрами (далее HD 6850 )
  • Radeon HD 5830 со стандартными параметрами (далее HD 5830 )
  • Radeon HD 5770 со стандартными параметрами (далее HD 5770 )
  • Geforce GTX 470 со стандартными параметрами (далее GTX 470 )
  • Geforce GTX 460 со стандартными параметрами, модель с 1 ГБ памяти (далее GTX 460 )

Для сравнения результатов новых моделей видеокарт серии Radeon HD 6800 были выбраны эти решения по следующим причинам: Radeon HD 5830 - наиболее близкое по цене и наименее производительное решение на основе чипа Cypress, HD 5770 - предыдущее решение компании для среднего ценового диапазона (того же, для которого предназначены новые модели), базирующееся на видеочипе Juniper.

А именно эти решения Nvidia взяты потому, что Geforce GTX 470 - одна из самых дешёвых карт на предыдущем топовом GPU, теперь спустившаяся по цене вниз и ставшая конкурентом для HD 6870 (GTX 465 рассматривать просто уже нет смысла, как снятую с производства). Ну а GTX 460 с гигабайтом видеопамяти была взята как прямой конкурент для младшей модели линейки HD - 6850.

Direct3D 9: тесты Pixel Filling

В тесте определяется пиковая производительность выборки текстур (texel rate) в режиме FFP для разного числа текстур, накладываемых на один пиксель:

Повторимся в очередной раз, что в данном тесте фильтрации RGB8-текстур большинство видеокарт показывают цифры, далёкие от теоретически возможных. И далее, в тесте из пакета 3DMark Vantage, есть более жизненные цифры. Результаты нашей текстурной синтетики в случае видеоплат HD 6800 сильно не дотягивают до пиковых значений, по ней получается, что новый чип выбирает лишь до 42 текселей за один такт из 32-битных текстур при билинейной фильтрации в этом тесте, что на треть меньше теоретической цифры в 56 отфильтрованных текселя.

Неудивительно, что в тяжёлых режимах карты семейства HD 6800 показывают столь высокую производительность, что значительно опережают своих соперников производства компании Nvidia. Любопытной получилась разница между семействами HD 6000 и HD 5000 в разных условиях. Если в случаях с большим количеством текстур, где больше всего сказывается количество TMU и их частота, выигрывают варианты на основе новых GPU, то при малом количестве текстур на пиксель впереди уже семейство HD 5000.

Забавно и то, что мы уже отметили подобный подход в обзоре Geforce GTX 580 - видимо, и в AMD несколько изменили баланс в новых GPU и/или драйверах и лёгкие условия принесли в жертву более тяжёлым. Рассмотрим эти же результаты в тесте филлрейта:

Ну а эти цифры показывают скорость заполнения, и в них мы видим всё то же самое, разве что с учетом количества записанных в буфер кадра пикселей. Максимальный результат остаётся за новыми решениями компании AMD, имеющими большее количество TMU и более эффективными в данном синтетическом тесте. В случаях с 0-3 накладываемыми текстурами, рассматриваемые сегодня решения немного уступают предыдущему поколению видеокарт AMD, а в сложных условиях опережают их.

Direct3D 9: тесты Pixel Shaders

Первая группа пиксельных шейдеров, которую мы рассматриваем, очень проста для современных видеочипов, она включает в себя различные версии пиксельных программ сравнительно низкой сложности: 1.1, 1.4 и 2.0, встречающихся в старых играх.

Тесты весьма просты для современных GPU и показывают не все возможности современных видеочипов, но они всё же интересны для оценки баланса между текстурными выборками и математическими вычислениями, и особенно при сравнении GPU, отличающихся архитектурно. Но в данном случае особых отличий между HD 5000 и HD 6000 нет, поэтому и результаты показаны схожие, с учётом частот, естественно.

Производительность в этих тестах ограничена по большей части филлрейтом и скоростью текстурных модулей, но с учётом эффективности блоков и кэширования текстурных данных. Новые модели Radeon попарно чуть быстрее предшествующих: HD 6870 быстрее HD 5830, а HD 6850 быстрее HD 5770. Ну и все они опережают две модели Geforce - GTX 470 в этих тестах показывает результат лишь на уровне HD 5770, да и у GTX 460 явно виден недостаток скорости текстурирования.

Посмотрим на результаты более сложных пиксельных программ промежуточных версий:

Как ни странно, получилось примерно то же самое. Тест Cook-Torrance более интенсивен вычислительно, и разница в нём примерно соответствует разнице в количестве ALU и их частоте. И из-за этого данный тест лучше подходит для архитектуры AMD, имеющей большее количество математических блоков, и в нём даже Radeon HD 5770 показывает результат на уровне видеокарты на основе GF100.

В сильно зависящем от скорости текстурирования тесте процедурной визуализации воды «Water» используется зависимая выборка из текстур больших уровней вложенности, и карты в нём располагаются по скорости текстурирования, с поправкой на разную эффективность использования TMU. В этом тесте есть две явные группы: HD 6870 и HD 5830, а также все остальные. Новые модели Radeon снова немного быстрее парных старых - неплохой результат.

Direct3D 9: тесты пиксельных шейдеров Pixel Shaders 2.0

Эти тесты пиксельных шейдеров DirectX 9 сложнее предыдущих, они близки к тому, что мы сейчас видим в мультиплатформенных играх, и делятся на две категории. Начнем с более простых шейдеров версии 2.0:

  • Parallax Mapping - знакомый по большинству современных игр метод наложения текстур, подробно описанный в статье .
  • Frozen Glass - сложная процедурная текстура замороженного стекла с управляемыми параметрами.

Существует два варианта этих шейдеров: с ориентацией на математические вычисления и с предпочтением выборки значений из текстур. Рассмотрим математически интенсивные варианты, более перспективные с точки зрения будущих приложений:

Это универсальные тесты, зависящие и от скорости блоков ALU? и от скорости текстурирования, в них важен общий баланс чипа. Производительность видеокарт в тесте «Frozen Glass» весьма схожа с тем, что мы видели выше в «Cook-Torrance». HD 6870 снова быстрее, чем HD 5830, а HD 6850 быстрее HD 5770. Ну и в целом решения компании AMD оказались быстрее карт Nvidia и в этот раз.

Во втором тесте «Parallax Mapping» решения Nvidia чувствуют себя немногим лучше, и HD 5770 соревнуется уже с GTX 460, а GTX 470 близка к HD 6850. Вероятно, скорость в тесте ограничена во многом математической производительностью. Рассмотрим эти же тесты в модификации с предпочтением выборок из текстур математическим вычислениям:

А вот со скоростью текстурирования у последних модификаций чипов графической архитектуры AMD всё очень хорошо, и поэтому они лишь наращивают своё преимущество. И даже GTX 470 из числа топовой серии уступает даже HD 5770 в этих тестах с упором на текстурирование. Ну а новые герои из семейства HD 6800 далеко впереди. HD 6870 и HD 6850 всё так же быстрее своих предшественников, что вполне объяснимо теоретически.

Но это были несколько устаревшие задачи, в основном с упором в текстурирование или филлрейт, а далее мы рассмотрим результаты ещё двух тестов пиксельных шейдеров - но уже версии 3.0, самых сложных из наших тестов пиксельных шейдеров для Direct3D 9 API, которые намного показательнее с точки зрения современных игр на ПК. Тесты отличаются тем, что сильнее нагружают и ALU, и текстурные модули, обе шейдерные программы сложные и длинные, включают большое количество ветвлений:

  • Steep Parallax Mapping - значительно более «тяжелая» разновидность техники parallax mapping, также описанная в статье .
  • Fur - процедурный шейдер, визуализирующий мех.

Как обычно, в наших самых сложных DX9-тестах, видеокарты производства Nvidia выступают уже сильнее решений AMD. И похоже, что с тестами сложных пиксельных шейдеров версии 3.0 у решений AMD всё не так уж безоблачно, как могло показаться ранее. При этом, оба PS 3.0 теста довольно сложные, скорость в них мало зависит от ПСП и текстурирования, зато код отличается большим количеством ветвлений, с которыми очень неплохо справляется новая архитектура Nvidia.

И в этих тестах даже HD 6870 трудно держать удар GTX 460, не говоря про GTX 470, которая является неоспоримым лидером в данной паре тестовых задач. Впрочем, не всё так плохо, и по крайней мере своих предшественников из серии HD 5000 новые решения уверенно обогнали. Просто в этих задачах позиции Nvidia традиционно сильнее.

Direct3D 10: тесты пиксельных шейдеров PS 4.0 (текстурирование, циклы)

Во вторую версию RightMark3D вошли два знакомых теста PS 3.0 под Direct3D 9, которые были переписаны под DirectX 10, а также ещё два новых теста. В первую пару добавились возможности включения самозатенения и шейдерного суперсэмплинга, что дополнительно увеличивает нагрузку на видеочипы.

Данные тесты измеряют производительность выполнения пиксельных шейдеров с циклами, при большом количестве текстурных выборок (в самом тяжелом режиме до нескольких сотен выборок на пиксель) и сравнительно небольшой загрузке ALU. Иными словами, в них измеряется скорость текстурных выборок и эффективность ветвлений в пиксельном шейдере.

Первым тестом пиксельных шейдеров будет Fur. При самых низких настройках в нём используется от 15 до 30 текстурных выборок из карты высот и две выборки из основной текстуры. Режим Effect detail - «High» увеличивает количество выборок до 40-80, включение «шейдерного» суперсэмплинга - до 60-120 выборок, а режим «High» совместно с SSAA отличается максимальной «тяжестью» - от 160 до 320 выборок из карты высот.

Проверим сначала режимы без включенного суперсэмплинга, они относительно просты, и соотношение результатов в режимах «Low» и «High» должно быть примерно одинаковым.

Производительность в этом тесте зависит как от количества и эффективности блоков TMU, так и от филлрейта с ПСП, но в меньшей степени. Результаты в «High» получаются примерно в полтора раза ниже, чем в «Low», как и должно быть по теории. В тестах Direct3D 10 процедурной визуализации меха с большим количеством текстурных выборок решения Nvidia обычно сильны, но последняя архитектура AMD к ним подтянулась, да как!

В результате, HD 6870 даже немного опережает GTX 470 в этом тесте, а HD 6850 показывает результат на уровне HD 5830 и лучше, чем GTX 460. Влияние эффективного филлрейта и ПСП хорошо видно по тому, как сильно отстаёт HD 5770 с 128-битной шиной памяти. Посмотрим на результат этого же теста, но с включенным «шейдерным» суперсэмплингом, увеличивающим работу в четыре раза, возможно в такой ситуации что-то изменится и ПСП с филлрейтом будут влиять меньше:

Включение суперсэмплинга увеличивает теоретическую нагрузку в четыре раза, и в этот раз сравнительные результаты решений Nvidia опускаются ещё ниже. Теперь HD 5770 встала на уровень GTX 460, а HD 6870 в полтора раза быстрее чем GTX 470. Разница между картами линеек HD 6000 и HD 5000 осталась примерно той же.

Второй шейдерный DX10-тест измеряет производительность исполнения сложных пиксельных шейдеров с циклами при большом количестве текстурных выборок и называется Steep Parallax Mapping. При низких настройках он использует от 10 до 50 текстурных выборок из карты высот и три выборки из основных текстур. При включении тяжелого режима с самозатенением число выборок возрастает в два раза, а суперсэмплинг увеличивает это число в четыре раза. Наиболее сложный тестовый режим с суперсэмплингом и самозатенением выбирает от 80 до 400 текстурных значений, то есть в восемь раз больше, по сравнению с простым режимом. Проверяем сначала простые варианты без суперсэмплинга:

Данный тест интереснее с практической точки зрения, так как разновидности parallax mapping давно применяются в играх, а тяжелые варианты, вроде нашего steep parallax mapping, используются во многих проектах, например, в играх Crysis и Lost Planet. Кроме того, в нашем тесте, помимо суперсэмплинга, можно включить самозатенение, увеличивающее нагрузку на видеочип примерно в два раза, такой режим называется «High».

Диаграмма во многом похожа на предыдущие. В обновленном D3D10 варианте теста без суперсэмплинга, HD 6870 становится лидером среди выбранных видеокарт, а HD 6850 с переменным успехом борется с HD 5830. Видеокарты Nvidia немного не дотягивают до решений AMD, а GTX 460 снова показала результат на уровне более дешёвой HD 5770. Посмотрим, что изменит включение суперсэмплинга, он должен вызвать ещё большее падение скорости на картах Nvidia.

При включении суперсэмплинга и самозатенения задача получается ещё более тяжёлой, совместное включение сразу двух опций увеличивает нагрузку на карты почти в восемь раз, вызывая большое падение производительности. Разница между скоростными показателями протестированных видеокарт изменилась, включение суперсэмплинга сказывается как и в предыдущем случае - карты производства AMD явно улучшили свои показатели относительно решения Nvidia.

И теперь HD 5770 уже опережает GTX 460, а HD 6850 обеспечивает производительность рендеринга, схожую со скоростью GTX 470. Сравнительные цифры в парах HD 6870 и HD 5830, а также HD 6850 и HD 5770 снова повторились, разница в пользу свежих моделей примерно та же. По этим тестам можно сделать вывод - обе карты линейки HD 6800 справились с «шейдерными» задачами отлично, что неудивительно, так как новый GPU имеет достаточно большое количество блоков ALU.

Direct3D 10: тесты пиксельных шейдеров PS 4.0 (вычисления)

Следующая пара тестов пиксельных шейдеров содержит минимальное количество текстурных выборок для снижения влияния производительности блоков TMU. В них используется большое количество арифметических операций и измеряют они именно математическую производительность видеочипов, скорость выполнения арифметических инструкций в пиксельном шейдере.

Первый математический тест - Mineral. Это тест сложного процедурного текстурирования, в котором используются лишь две выборки из текстурных данных и 65 инструкций типа sin и cos.

Чисто математические тесты привычно соответствуют разнице в частотах и количестве ALU. И это объясняет тот факт, что решения AMD в этих тестах явно оказываются значительно более производительными. Современная архитектура AMD в таких случаях имеет большое преимущество перед конкурирующими видеокартами от Nvidia. Что подтвердилось в очередной раз, даже HD 5770 быстрее обеих карт Nvidia, не говоря уже про новые HD 6870 и HD 6850.

Что касается сравнения нового и старого семейств видеокарт AMD, то HD 6870 является явным лидером теста, обогнав вдвое самую слабую карту сравнения - GTX 460. А HD 6850 показала результат на уровне HD 5830, что немного не соответствует теоретической разнице - в данном случае новый GPU отработал эффективнее старого. А вот все остальные решения расположились примерно соответственно теории, это касается как карт Nvidia, так и AMD.

Рассмотрим второй тест шейдерных вычислений, который носит название Fire. Он тяжелее для ALU, и текстурная выборка в нём только одна, а количество инструкций типа sin и cos увеличено вдвое, до 130. Посмотрим, что изменилось при увеличении нагрузки:

И в этот раз все GPU остались примерно на тех же позициях, можно лишь отметить тот факт, что HD 5830 в этом тесте всё же опережает HD 6850. И, в отличие от предыдущего теста, это уже полностью соответствует теории, так как HD 5830 и должен быть немного быстрее. В остальном - всё то же самое, так как скорость рендеринга ограничена исключительно производительностью шейдерных блоков, поэтому карты AMD оказываются далеко впереди решений Nvidia - налицо уже привычный разгром.

Direct3D 10: тесты геометрических шейдеров

В пакете RightMark3D 2.0 есть два теста скорости геометрических шейдеров, первый вариант носит название «Galaxy», техника аналогична «point sprites» из предыдущих версий Direct3D. В нем анимируется система частиц на GPU, геометрический шейдер из каждой точки создает четыре вершины, образующих частицу. Аналогичные алгоритмы должны получить широкое использование в будущих играх DirectX 10.

Изменение балансировки в тестах геометрических шейдеров не влияет на конечный результат рендеринга, итоговая картинка всегда абсолютно одинакова, изменяются лишь способы обработки сцены. Параметр «GS load» определяет, в каком из шейдеров производятся вычисления - в вершинном или геометрическом. Количество вычислений всегда одинаково.

Рассмотрим первый вариант теста «Galaxy», с вычислениями в вершинном шейдере, для трёх уровней геометрической сложности:

Соотношение скоростей при разной геометрической сложности сцен примерно одинаково для всех решений, производительность соответствует количеству точек, с каждым шагом падение FPS составляет около двух раз. Задача для современных видеокарт не особенно сложная, производительность в целом ограничена не только скоростью обработки геометрии, но и пропускной способностью памяти в определённой мере.

И вот здесь мы впервые видим результат архитектурных изменений в виде подтянутой геометрической производительности видеочипа Barts. Обе видеокарты нового семейства Radeon HD 6800 показали результаты, заметно превышающие скорость решений линейки HD 5000. Причём, они обе обогнали и GTX 460, а вот до победы над GTX 470 новой HD 6870 не хватило совсем чуть-чуть.

В любом случае, выполнение геометрических шейдеров у HD 6800 стало заметно более эффективным, и новый чип быстрее всех предыдущих от компании AMD в этом тесте. Посмотрим, как изменится ситуация при переносе части вычислений в геометрический шейдер:

При изменении нагрузки в этом тесте, цифры для решений и Nvidia и AMD почти не изменились. Новые видеокарты семейства HD 6800 в данном тесте почти не реагируют изменения параметра GS load, отвечающего за перенос части вычислений в геометрический шейдер, и показывают аналогичные предыдущей диаграмме результаты. И, что интересно, они ведут себя скорее аналогично видеоплатам Nvidia, а не HD 5830 и HD 5770. Последние-то как раз немного улучшили свои показатели в данном случае. Что же, посмотрим, что изменится в следующем тесте, который предполагает большую нагрузку именно на геометрические шейдеры.

«Hyperlight» - это второй тест геометрических шейдеров, демонстрирующий использование сразу нескольких техник: instancing, stream output, buffer load. В нем используется динамическое создание геометрии при помощи отрисовки в два буфера, а также новая возможность Direct3D 10 - stream output. Первый шейдер генерирует направление лучей, скорость и направление их роста, эти данные помещаются в буфер, который используется вторым шейдером для отрисовки. По каждой точке луча строятся 14 вершин по кругу, всего до миллиона выходных точек.

Новый тип шейдерных программ используется для генерации «лучей», а с параметром «GS load», выставленном в «Heavy» - ещё и для их отрисовки. Другими словами, в режиме «Balanced» геометрические шейдеры используются только для создания и «роста» лучей, вывод осуществляется при помощи «instancing», а в режиме «Heavy» выводом также занимается геометрический шейдер. Сначала рассматриваем лёгкий режим:

Относительные результаты в разных режимах снова соответствуют нагрузке: во всех случаях производительность неплохо масштабируется и близка к теоретическим параметрам, по которым каждый следующий уровень «Polygon count» должен быть менее чем в два раза медленней.

В этом тесте скорость рендеринга больше всего ограничена именно геометрической производительностью. Новые видеокарты компании AMD показывают значительно более сильные результаты, по сравнению со старыми моделями, что объясняется архитектурными изменениями в GPU. И хотя Geforce GTX 470 остаётся лидером теста, за ней очень плотно идёт HD 6870. А в паре HD 6850 и GTX 460 решение AMD и вовсе выигрывает. Это явственно говорит о наличии серьёзных оптимизаций по обработке геометрических данных в Barts.

Но цифры должны измениться на следующей диаграмме, в тесте с более активным использованием геометрических шейдеров. Также будет интересно сравнить друг с другом результаты, полученные в режимах «Balanced» и «Heavy».

А вот в этом тесте мы всё же видим явную разницу между чипами с традиционным графическим конвейером (все Radeon, в том числе и новые решения на Barts) и чипами с архитектурой Fermi. Да, GF104 по скорости исполнения геометрических шейдеров в этом тесте отстаёт, показывая худший результат, чем обе Barts, но это легко объяснимо урезанными возможностями геометрической обработки в чипе среднего ценового диапазона. Но посмотрите на результат GTX 470, имеющей в основе чип GF100, - он значительно выше всех остальных протестированных сегодня видеокарт.

Возможности топовых чипов Nvidia по обработке геометрии и скорости исполнения геометрических шейдеров очень сильно превышают их же решения среднего ценового диапазона, а также все конкурирующие решения AMD. Но всё же, новый чип Barts, применённый в линейке HD 6800, позволил в этих тестах обогнать GF104 и значительно сократить отставание даже от недавнего топового чипа Nvidia. Отличный результат!

Direct3D 10: скорость выборки текстур из вершинных шейдеров

В тестах «Vertex Texture Fetch» измеряется скорость большого количества текстурных выборок из вершинного шейдера. Тесты схожи по сути, и соотношение между результатами карт в тестах «Earth» и «Waves» должно быть примерно одинаковым. В обоих тестах используется на основании данных текстурных выборок, единственное существенное отличие состоит в том, что в тесте «Waves» используются условные переходы, а в «Earth» - нет.

Рассмотрим первый тест «Earth», сначала в режиме «Effect detail Low»:

Предыдущие исследования показали, что на результаты этого теста влияет и скорость текстурирования, и пропускная способность памяти. И это отлично видно по результатам Radeon HD 5770, имеющем меньшую ПСП и сильно отставшем от других участников теста. Между остальными решениями разница не такая уж большая, хотя интересно, что GTX 470 оказывается лидером в двух тяжёлых режимах, а HD 6870 - в наиболее простом. Но что важно, так это то, что обе карты семейства HD 6800 опережают HD 5830 предыдущего поколения.

Посмотрим на производительность в этом же тесте с увеличенным количеством текстурных выборок:

Взаимное расположение карт на диаграмме почти не изменилось, но обе карты Nvidia почему-то ещё больше потеряли в производительности в наиболее лёгком режиме. В данном случае GTX 460 и GTX 470 остаются недосягаемы для соперников, но лишь в двух тяжёлых режимах теста. Обе карты линейки HD 6800 всё так же опережают старые. Влияние ПСП заметно и тут - результат HD 5770 довольно низок.

Рассмотрим результаты второго теста текстурных выборок из вершинных шейдеров. Тест «Waves» отличается меньшим количеством выборок, зато в нём используются условные переходы. Количество билинейных текстурных выборок в данном случае до 14 («Effect detail Low») или до 24 («Effect detail High») на каждую вершину. Сложность геометрии изменяется аналогично предыдущему тесту.

А вот результаты в тесте «Waves» совсем не похожи на то, что мы видели на предыдущих диаграммах. Подавляющего преимущества у продукции AMD здесь нет, но в этом тесте именно две новые карты стали лидерами, а GTX 470 и HD 5830 немного отстают от них. GTX 460 показывает производительность ещё ниже, а наиболее медленной привычно и заслуженно стала Radeon HD 5770. Видимо, в тесте всё-таки сказывается влияние ПСП. Рассмотрим второй вариант этого же теста:

Изменения почти отсутствуют, хотя карты Nvidia немного сдали позиции и теперь GTX 470 по скорости соответствует HD 5830, кроме самого тяжёлого режима. Снова мы видим, что видеокарты Nvidia стали сильнее в тяжёлом режиме, но много теряют в простых. В любом случае, результаты нового графического процессора Barts, а также видеокарт на его основе, во втором тесте вершинных выборок весьма хороши, и новый GPU даже стал быстрейшим в этом тесте.

3DMark Vantage: Feature тесты

Синтетические тесты из пакета 3DMark Vantage могут показать нам что-то, что мы ранее упустили. Feature-тесты этого тестового пакета обладают поддержкой D3D10 и интересны уже тем, что отличаются от наших. При анализе результатов нового решения Nvidia в этом пакете мы сможем сделать какие-то новые и полезные выводы, ускользнувшие от нас в тестах семейства RightMark. Особенно это касается теста скорости текстурных выборок. Feature Test 1: Texture Fill

Первый тест - тест скорости текстурных выборок. Используется заполнение прямоугольника значениями, считываемыми из маленькой текстуры с использованием многочисленных текстурных координат, которые изменяются каждый кадр.

Как видно, тест Futuremark также не показывает теоретически возможного уровня скорости текстурных выборок, хотя эффективность новых карт AMD в нём несколько выше, чем в нашем. Карты Nvidia также более эффективно используют имеющиеся текстурные блоки, и в этом текстурном тесте получается иное соотношение результатов, по сравнению с нашим. И мы считаем, что эти цифры больше похожи на реальное положение дел.

Две новые видеокарты семейства Radeon HD 6800 показали результаты немногим лучшие, чем их парные соперники: HD 5830 для HD 6870 и HD 5770 для HD 6850. Видно, что в Barts усилилась в основном математическая производительность. Обе видеокарты Nvidia всё так же продолжают показывать не слишком высокие результаты, но они уже подобрались к решениям AMD поближе. GTX 470 оказался примерно на уровне HD 5770, а GTX 460, имеющий больше блоков TMU, почти дотянул до HD 6850. Feature Test 2: Color Fill

Это тест скорости заполнения. Используется очень простой пиксельный шейдер, не ограничивающий производительность. Интерполированное значение цвета записывается во внеэкранный буфер (render target) с использованием альфа-блендинга. Используется 16-битный внеэкранный буфер формата FP16, наиболее часто используемый в играх, применяющих HDR-рендеринг, поэтому такой тест является вполне своевременным.

В этом тесте мы видим две группы видеокарт, расположенных в соответствии с теоретическими цифрами филлрейта, но без учёта влияния ПСП видеопамяти. Цифры Vantage показывают именно производительность блоков ROP и только её, но не величину пропускной способности. Поэтому результаты HD 5830, HD 5770 и GTX 460 весьма близки, как и цифры обеих новых карт и GTX 470.

Впрочем, HD 6870 показывает лучший результат, процентов на 10 опережая соперника от Nvidia, а HD 6850 не только впереди своих прямых конкурентов, но также берёт верх и над GTX 470. Итак, отметим высокую скорость заполнения у новых моделей видеокарт, соответствующую уровню недавнего топа у конкурента.

Feature Test 3: Parallax Occlusion Mapping

Один из самых интересных feature-тестов, так как подобная техника уже используется в играх. В нём рисуется один четырехугольник (точнее, два треугольника), с применением специальной техники Parallax Occlusion Mapping, имитирующей сложную геометрию. Используются довольно ресурсоёмкие операции по трассировке лучей и карта глубины большого разрешения. Также эта поверхность затеняется при помощи тяжёлого алгоритма Strauss. Это тест очень сложного и тяжелого для видеочипа пиксельного шейдера, содержащего многочисленные текстурные выборки при трассировке лучей, динамические ветвления и сложные расчёты освещения по Strauss.

Этот тест отличается от других подобных тем, что результаты в нём зависят не исключительно от скорости математических вычислений или эффективности исполнения ветвлений или скорости текстурных выборок, а от всего понемногу. И для достижения высокой скорости важен правильный баланс блоков GPU и ПСП видеопамяти. Заметно влияет на скорость и эффективность выполнения ветвлений в шейдерах.

Сравнительные результаты видеокарт AMD на диаграмме весьма похожи на те, что мы видели в тесте текстурной производительности 3DMark Vantage. А вот для Nvidia это не так - в данном случае GTX 470 получила явное ускорение, видимо, из-за разной эффективности выполнения шейдерных программ с ветвлениями. И вообще - немного удивительно, что именно GTX 460 стал аутсайдером этого теста, проиграв даже HD 5770. А вот новые герои от AMD снова попарно хоть и чуть-чуть, но всё-таки быстрее своих предшественников в лице HD 5830 и HD 5770. Feature Test 4: GPU Cloth

Тест интересен тем, что рассчитывает физические взаимодействия (имитация ткани) при помощи видеочипа. Используется вершинная симуляция, при помощи комбинированной работы вершинного и геометрического шейдеров, с несколькими проходами. Используется stream out для переноса вершин из одного прохода симуляции к другому. Таким образом, тестируется производительность исполнения вершинных и геометрических шейдеров и скорость stream out.

Скорость рендеринга в этом тесте зависит сразу от нескольких параметров, основные из которых: производительность обработки геометрии и эффективность выполнения геометрических шейдеров. И поэтому видеокарты производства Nvidia чувствуют себя как рыба в воде, значительно опережая конкурентов от компании AMD. Хорошо видна и разница между решениями Nvidia из разных ценовых диапазонов.

Конкретно у представленных недавно видеокарт новой серии Radeon HD 6800 скорость рендеринга в этом тесте выше, чем у предыдущей линейки, так как в Barts увеличили скорость обработки геометрии и выполнения геометрических шейдеров. И хотя HD 6870 всё же не достаёт до GTX 460, но она значительно обгоняет другие протестированные решения компании, да и HD 6850 идёт где-то недалеко. Feature Test 5: GPU Particles

Тест физической симуляции эффектов на базе систем частиц, рассчитываемых при помощи видеочипа. Также используется вершинная симуляция, каждая вершина представляет одиночную частицу. Stream out используется с той же целью, что и в предыдущем тесте. Рассчитывается несколько сотен тысяч частиц, все анимируются отдельно, также рассчитываются их столкновения с картой высот.

Аналогично одному из тестов нашего RightMark3D 2.0, частицы отрисовываются при помощи геометрического шейдера, который из каждой точки создает четыре вершины, образующих частицу. Но тест больше всего загружает шейдерные блоки вершинными расчётами, также тестируется stream out.

Результаты очередного теста весьма похожи на те, что мы видели на предыдущей диаграмме, но здесь скорость обработки геометрии даже ещё важнее, чем в прошлом тесте. Именно поэтому старое поколение в виде карт Radeon HD 5830 и HD 5770 отстало как от обеих Geforce, являющихся лидерами сравнения, так и от новой линейки видеокарт, рассмотренной сегодня. А обе модели, основанные на Barts, показали неплохие результаты, уступив GTX 460 не слишком много.

В общем, в синтетических тестах имитации тканей и частиц из тестового пакета 3DMark Vantage, где активно используются геометрические шейдеры, новый чип Barts показал себя просто отлично, так как в нём была ускорена обработка геометрии. И хотя оба решения линейки HD 6800 продолжают отставать от конкурирующих с ними видеокарт соперника, разница между ними заметно сократилась - работа над этим улучшением в Barts проведена неплохо. Но всё же от следующего топового решения компании AMD мы ожидаем ещё больших архитектурных изменений. Feature Test 6: Perlin Noise

Последний feature-тест пакета Vantage является математически-интенсивным тестом видеочипа, он рассчитывает несколько октав алгоритма Perlin noise в пиксельном шейдере. Каждый цветовой канал использует собственную функцию шума для большей нагрузки на видеочип. Perlin noise - это стандартный алгоритм, часто используемый в процедурном текстурировании, он использует очень много математических расчётов.

В чисто математическом тесте из пакета компании Futuremark, показывающим пиковую производительность видеочипов в предельных задачах, мы видим уже знакомую нам картину. Показанная на диаграмме производительность решений примерно соответствует тому, что должно получаться по теории, и тому, что мы видели ранее в наших математических тестах из пакета RightMark 2.0.

Так как новые карты HD 6870 и HD 6850 серьёзно усилили позиции как раз по математике, то неудивительно, что старшая модель является лидером сравнения, а младшая опережает предшествующую плату среднего ценового диапазона - HD 5770. Видеокарты Geforce показывают не очень высокие результаты, проигрывая всем платам AMD, что полностью соответствует теории. Ведь простая, но интенсивная математика выполняется на видеокартах Radeon значительно быстрее.

Выводы по синтетическим тестам

По результатам проведённых синтетических тестов видеокарт из нового семейства Radeon HD 6800, основанных на графическом процессоре Barts, а также результатам других моделей видеокарт производства обоих производителей дискретных видеочипов, мы делаем вывод о том, что это весьма подходящая замена решениям среднего ценового диапазона на чипах прошлого поколения.

Графический процессор Barts хоть и не слишком сильно отличается от предыдущих чипов архитектурно, но зато количество исполнительных блоков и их частота возросли настолько, что производительность вплотную подобралась к топовой серии предшествующего поколения - HD 5800. Также новый GPU отличается некоторыми архитектурными улучшениями, направленными на устранение самого важного из недостатков, по сравнению с продукцией конкурента, - и по синтетическим тестам мы видим, что производительность обработки геометрии выросла.

Благодаря всем изменениям, результаты видеокарт новой серии во многих синтетических тестах являются максимальными для решений из данного ценового сектора. Особенно хорошо это видно в распараллеленных, но не слишком сложных по алгоритму вычислительных тестах из пакетов RightMark и Vantage. Да и во всех остальных приложениях скорость HD 6800 очень неплохая - заметно выше, чем у соответствующих решений из предыдущей линейки.

Можно предположить, что очень неплохие результаты Radeon HD 6870 и HD 6850 в наших синтетических тестах будут подтверждены и аналогичными результатами в следующей части нашего материла, где вы ознакомитесь с игровыми тестами из нашего набора. Соответственно, в игровых тестах HD 6870 должна будет опередить HD 5830, а HD 6850 оказаться быстрее, чем HD 5770.

Но вот что получится в сравнении с видеокартами Geforce, предсказать не так уж просто, так как и у тех, и у других есть свои сильные и слабые стороны. Вероятно, в некоторых играх будут первенствовать выпущенные недавно решения компании AMD, а в других верх возьмут их конкуренты от Nvidia. Тем интереснее будет посмотреть на результаты!

Вторая половина прошлого и большая часть нынешнего года прошли для графического подразделения компании AMD весьма удачно. Судите сами, выход первого в мире графического ускорителя с поддержкой DirectX 11, который отличался отменной производительностью и относительно холодным нравом, заставил многих по-новому взглянуть на семейство Radeon. Зачастую даже самые ярые поклонники продукции калифорнийской NVIDIA переходили на сторону AMD, ведь их любимая компания, на тот момент, не могла предоставить альтернативу. В результате, NVIDIA потеряла значительную долю рынка настольной графики, уступив место лидера компании AMD.

Теперь для AMD основной задачей является укрепление своих позиций и дальнейшее развитие успеха, в то время как NVIDIA всеми силами будет стараться изменить своё положение и наладить выпуск конкурентоспособных решений на базе архитектуры Fermi. Некоторые из этих решений, уже вышедших на рынок, создают немало хлопот для представителей красного лагеря. Так, например, GeForce GTX 460 достаточно успешно конкурирует с Radeon HD 5830, да и GeForce GTX 470 вместе с флагманом в лице GTX 480 выглядят достаточно уверенно. И если со старшим на данный момент ускорителем на базе Fermi можно бороться снижением стоимости Radeon HD 5870, то в среднем сегменте возможностей для маневров не так много. Учитывая, что большую прибыль производители получают именно с “середнячков”, а не с топовых решений, самым логичным шагом при продвижении новинок в данной ситуации является “атака” на позиции GeForce GTX 460 и GeForce GTX 470. Для этого в качестве оружия в AMD выбрали ускорители Radeon HD 6850 и Radeon HD 6870. Ну что же, давайте знакомиться с новинками.

Начнём с названия. Несмотря на более высокий цифровой индекс, сама компания AMD позиционирует новинки отнюдь не в качестве полноценной замены Radeon HD 5870. Ускорители Radeon HD 6850, как и Radeon HD 6870, в большинстве случаев окажутся медленнее, чем одночиповый флагман компании. А изменения в цифровом индексе связаны с очередным обновлением архитектуры GPU AMD, и в этот раз, как уже было сказано, “красные” решили начать экспансию не с вершины, а с самой середины.

Официальные слайды AMD говорят о том, что новый Radeon HD 6870 по уровню производительности должен быть немного быстрее Radeon HD 5850, а Radeon HD 6850 займёт место между Radeon HD 5770 и Radeon HD 5850.

Несколько позже подоспеют и старшие ускорители на базе новых GPU, которые получат маркетинговые имена Radeon HD 6970 и Radeon HD 6990. О самых старших представителях нового семейства пока что ничего конкретного неизвестно, а вот о Radeon HD 6850 и 6870 нам есть что рассказать.

Ускорители AMD Radeon HD 6850 и Radeon HD 6870 построены на базе графических процессоров с кодовым именем Barts. С точки зрения архитектуры, новые GPU не содержат революционных изменений. Все модификации, проводимые инженерами AMD, были направлены на улучшение потребительских характеристик новинок.

Итак, вот основные параметры, над улучшением которых поработали инженеры AMD:

  • Более высокая производительность на единицу площади кристалла, благодаря внутренним оптимизациям GPU;
  • Обновлённая DX11 архитектура, более высокая геометрическая производительность, а также усовершенствованная тесселляция;
  • Обновлённые и усовершенствованные технологии улучшения качества 3D-графики. Появление нового режима сглаживания и улучшение алгоритма анизотропной фильтрации;
  • Усовершенствованное ускорение работы с мультимедиа контентом. Поддержка UVD3, AMD APP, Blu-Ray 3D;
  • Усовершенствованные технологии вывода контента. Поддержка AMD Eyefinity, HDMI 1.4a, DP 1.2.

Что касается внутреннего устройства GPU Barts, то оно, как мы и говорили ранее, не подверглось существенной переработке со времён Cypress:

Блок-схема графического процессора Cypress

Блок-схема графического процессора Barts XT

В сравнении с чипом Cypress, новый GPU Barts XT получил меньшее функциональных блоков. Так, количество SIMD ядер, включающих в себя по 16 шейдерных процессоров, уменьшилось с 20 до 14 штук, как следствие, общее число шейдерных процессоров уменьшилось с 1600 (320) до 1120 (224). На каждое SIMD ядро приходится по 4 текстурных блока, как и в случае с GPU Cypress, однако суммарное количество TMU у Barts меньше - 56 (против 80 у Cypress).

Для максимально эффективного управления потоками вершинных, геометрических и пиксельных шейдеров в современных графических процессорах AMD существует так называемый диспетчер потоков, именуемый “Ultra-Threaded Dispatch Processor”. В чипе Cypress всего один такой диспетчер, а вот судя по блок-схеме Barts XT, этот GPU насчитывает уже два таких процессора.

Пожалуй, одним из основных отличий нового графического процессора стал улучшенный блок тесселляции. По заявлению AMD, его производительность в случае с Radeon HD 6870 может быть до двух раз выше, чем у Radeon HD 5870, правда степень превосходства напрямую зависит от уровня тесселляции.

Несмотря на существенный рост качества 3D-моделей с включённой тесселляцией, для современных GPU всё ещё не так просто поддерживать достаточно высокий FPS при максимально возможном уровне тесселляции. На этом слайде приведён пример, в котором показан один объект, с разной степенью тесселляции. Если на один треугольник приходится лишь один пиксел, то в процессе растеризации возникает ряд проблем, например, недостаточная утилизация блока растеризации, так называемый overshading эффект (когда каждый пиксел закрашивается более чем 8 раз), кроме того, в такой сцене слишком много полигонов, чтобы можно было без ущерба активировать мультисэмплинг.

Безусловно, эту проблему не решить простым наращиванием “грубой мощи” графического процессора. Намного эффективнее использовать ряд оптимизаций. Для максимально эффективной работы блока растеризации современных GPU AMD требуется, чтобы на один треугольник приходилось примерно 16 пикселей. Кроме того, высокую степень тесселляции стоит использовать только в том случае, если:

  • Объект находится максимально близко к камере;
  • Только по контуру объекта или в тех частях, где необходимо показать множество мелких деталей.

В свою очередь на удалённых объектах можно использовать низкую степень тесселляции для увеличения производительности

Для любителей максимального качества картинки AMD приготовила приятный сюрприз. Владельцам Radeon HD 5xxx/6xxx станет доступен новый метод полноэкранного сглаживания - Morphological AA

Для реализации алгоритмов MLAA используется специальный пост-фильтр, работа которого, в отличие от некоторых других методов полноэкранного сглаживания, не зависит от расположения границ полигонов. Ускорение MLAA осуществляется посредством DirectCompute. Если передать упрощённо смысл работы MLAA, получится примерно следующее: вначале алгоритм обнаруживает высококонтрастные вершины, анализирует их и на основе полученных данных производит смешивание цветов для каждого пиксела.

Полученные данные можно использовать повторно, а чтобы избежать избыточной выборки данных и, как следствие, падения производительности, используется специальный LDS-буфер (Local Data Share).

Мы предполагаем, что качество работы нового алгоритма должно быть близко к 4x MSAA, при этом производительность, по словам представителей AMD будет близка к более простому режиму CFAA. Новый алгоритм сглаживания совместим с любым DirectX 9/10/11 приложением, для его активации нужно будет включить соответствующую опцию в контрольной панели драйверов. Это мы обязательно проверим, как только представится соответствующая возможность.

Не забыли в AMD и про улучшения качества анизотропной фильтрации. Новые ускорители Radeon HD 6850/6870 поддерживают усовершенствованные алгоритмы работы AF, качество реализации которых не зависит от угла обзора, при этом практически никак не сказывается на производительности.

Для Radeon HD 6850/6870 в новых драйверах AMD станут доступны новые варианты настройки Catalyst A.I. Изменение этих параметров влияет на качество фильтрации текстур. Доступны три положения:

  • High Quality . В этом режиме выключены все оптимизации работы с текстурами;
  • Quality . В этом режиме, который, кстати, включён по умолчанию, работает трилинейная оптимизация и оптимизация анизотропной фильтрации. Как заявляет AMD, используемые “заточки” никак не влияют на качество картинки;
  • Performance. При выборе этого положения оптимизация трилинейной и анизотропной фильтрации работает в более агрессивном режиме, который позволяет повысить скорость, но при этом вы можете заметить потерю качества картинки.

После выхода на рынок AMD Radeon HD 5870 прошло достаточно времени, прежде, чем мы смогли самостоятельно проверить в деле технологию Eyefinity . Уже на тот момент эта технология работала достаточно стабильно, а главное, чувствовался позитивный эффект в играх. Во время анонса Radeon HD 6850/6870 представители AMD не забыли упомянуть о ряде улучшений в работе Eyefinity, среди которых возможность создания нескольких Eyefinity групп, улучшенные алгоритмы переключения дисплеев, поддержка коррекции цвета на каждом отдельно взятом мониторе и т.д.

Более того, в этот раз в AMD решили напрямую сравнить Eyefinity с аналогичной технологией NVIDIA, которая, кстати, была анонсирована спустя некоторое время после Eyefinity. Часть из приведённых аргументов выглядит весьма убедительно, однако с некоторыми всё же можно поспорить.

Как бы то ни было, уже сейчас AMD Eyefinity выглядит более завершённым решением, которое прошло годовую обкатку на рынке и судя по всему доказало свою жизнеспособность.

А вот по части внедрения технологий для просмотра 3D-контента AMD оказалась не первой. Уже довольно давно NVIDIA продвигает на рынок технологию 3DVision, поддержка которой реализована в сотнях игр. Однако, не быть первым, не значит стать худшим. И в AMD это прекрасно понимают. Поэтому, вместе с запуском ускорителей Radeon HD 6850/6870, производитель анонсировал технологию AMD HD3D, которая позволит владельцам новых видеокарт AMD насладиться 3D-стерео играми в полном объёме. В отличие от компании NVIDIA, которая самостоятельно продаёт очки для 3DVision, AMD даёт возможность сторонним производителям заниматься разработкой 3D-очков. Конечному потребителю от этого только польза, разумеется, если предлагаемые решения будут достаточно качественными.

Наконец, нельзя не упомянуть о том, что AMD старается активно участвовать в продвижении параллельных вычислений силами графических процессоров, а также использовать внутренние ресурсов видеокарты для ускорения воспроизведения мультимедиа-контента, например, Blu-Ray 3D. В частности, в GPU Barts встроен видеопроцессор третьего поколения UVD3.

Чтобы подытожить теоретическую часть нашего материала, мы составили таблицу, содержащую данные о технических особенностях современных решений AMD и NVIDIA:

Свойство Название видеокарт
NVIDIA GeForce GTS 450 1 Гб NVIDIA GeForce GTX 460 1 Гбайт NVIDIA GeForce GTX 470 1280 Мбайт AMD Radeon HD 5750 1 Гбайт AMD Radeon HD 5770 1 Гбайт AMD Radeon HD 5830 1 Гбайт AMD Radeon HD 5850 1 Гбайт AMD Radeon HD 5870 1 Гбайт AMD Radeon HD 6850 1 Гбайт AMD Radeon HD 6870 1 Гбайт
Кодовое имя ядра GF106 GF104 GF100 Juniper Juniper XT Cypres Cypres Cypress XT Barts Barts XT
Техпроцесс,нм 40 40 40 40 40 40 40 40 40 40
Кол-во транзисторов, млн. шт. 1170 1950 3200 1040 1040 2150 2150 2150 1700 1700
Максимальное энергопотребление, Вт 106 160 215 86 108 175 170 188 127 151
Частота ядра GPU, МГц 783 675 607 720 850 800 725 850 775 900
Кол-во блоков ROP, шт 16 32 40 16 16 16 32 32 32 32
Кол-во TMU, шт 32 64 56 36 40 56 72 80 48 56
Кол-во блоков CUDA/ универсальных процессоров 192 336 448 720 800 1120 1440 1600 960 1120
Частота шейдерного домена, МГц 1566 1350 1215
Тип видеопамяти GDDR-5 GDDR-5 GDDR-5 GDDR-5 GDDR-5 GDDR-5 GDDR-5 GDDR-5 GDDR-5 GDDR-5
Разрядность шины памяти, бит 128 256 320 128 128 256 256 256 256 256
Эффективная частота видеопамяти, МГц 3600 3600 3348 4600 4800 4000 4000 4800 4000 4200
ПСП видеопамяти, Гб/с 57,7 115,2 133.9 73,6 76,8 128 128 153.6 128 134,4
Примерная розничная стоимость по данным Market 3DNews 4600 6700 10200 3800 4700 7500 8700 12500 ~179$ ~239$

По предварительным данным, стоимость Radeon HD 6850 и Radeon HD 6870 составит около 179 и 239 долларов соответственно. Ну что же, чуть позже посмотрим, смогут ли новинки оправдать свой ценник уровнем производительности в современных играх, а пока переходим к внешнему осмотру.

⇡ Внешний осмотр Radeon HD 6870 и Radeon HD 6850

Итак, наконец, перед нами ускорители Radeon HD 6850 и Radeon HD 6870. Вместе со сменой порядкового номера изменился и внешний вид ускорителей. Новые видеокарты существенно отличаются от своих собратьев предыдущего поколения. Плавные черты и небольшие округлости в дизайне системы охлаждения Radeon HD 5xxx сменились строгими и резкими чертами нового кожуха СО. Порой кажется, что о столь острые углы можно даже порезаться.

Для оценки габаритов новинок мы решили запечатлеть рядом с ними три ускорителя предыдущего поколения: Radeon HD 5870, Radeon HD 5850 и Radeon HD 5770. Оказалось, что по размеру Radeon HD 6850 и Radeon HD 6870 находятся где-то между представителями предыдущего поколения. Radeon HD 6870 оказался несколько короче Radeon HD 5870, но при этом примерно на 1-1,5 сантиметра длиннее, чем Radeon HD 5850. В свою очередь Radeon HD 6850 оказался “зажат” между Radeon HD 5770 и Radeon HD 5850. Как бы то ни было, а габариты Radeon HD 6850/6870 нас не испугали, эти ускорители должны без труда влезть почти в любой корпус.

Наконец-то для лучшей узнаваемости продуктов на кожух системы охлаждения были нанесены название и номер модели ускорителя.

Количество и тип разъёмов на панели выводов у Radeon HD 6850 и HD 6870 абсолютно одинаковы: 2x Mini DisplayProt, HDMI 1.4A, 2x DVI (DL-DVI + SL-DVI). Особо отметим тот факт, что AMD Radeon HD 6850/6870 поддерживают интерфейс DisplayPort версии 1.2, который отличается предыдущей версии данного интерфейса.

Главные отличия заключаются в существенно увеличенной пропускной способности DP 1.2, а также поддержке технологии Multi-Stream, благодаря которой к одному порту DP можно подключить несколько мониторов.

Ускоритель Radeon HD 6850 для нормальной работы требует подключения одного шестиконтактного разъёма питания, а Radeon HD 6870 - двух.

Подсистема питания у обоих ускорителей выполнена по схожим схемам. За питание GPU отвечают четыре фазы (контроллер напряжения CHiL Semiconductor CHL8341). Питание памяти обеспечивает одна фаза (контроллер Anpec APW7165). Наконец, контроллер питания памяти также однофазный.

Система охлаждения Radeon HD 6850

Система охлаждения Radeon HD 6850 состоит из двух частей. Первая часть представляет собой металлическую пластину с наклеенными на неё термопрокладками. Вторая часть - турбина, установленная под пластиковым кожухом СО и продувающая небольшой медный радиатор. Радиатор, в свою очередь, забирает тепло от кристалла графического процессора.

Система охлаждения Radeon HD 6870

Несмотря на внешнее сходство, внутри системы охлаждения Radeon HD 6850 и Radeon HD 6870 существенно отличаются. Так, СО Radeon HD 6870, в отличие от кулера HD 6850, изготовлена с применением тепловых трубок, служащих для равномерного распределения тепла по всей площади радиатора, медное основание которого контактирует с поверхностью графического чипа через тонкий слой термопасты, а тепло от чипов памяти собирается через термопрокладки.

Обе платы комплектуются чипами памяти производства Hynix. Маркировка чипов H5G01H24AFR-T2C, номинальная частота этой памяти составляет 5 ГГц QDR.

⇡ Тестирование

Ну что же, от поверхностного знакомства пора переходить к практическим испытаниям. Приступим. Для начала, ознакомьтесь с конфигурацией тестового стенда и списком тестовых пакетов.

Центральный процессор Intel Core i7 870 @ 4.0 GHz (200x19)
Система охлаждения GlacialTech F101 + 2 x 120 мм кулера
Материнская плата ASUS Maximus III Extreme
Оперативная память DDR3 Super Talent 2x2 Гбайт @ 1890MHz @ 9-9-9
Блок питания IKONIK Vulcan 1200 Вт
Жёсткий диск Samsung SpinPoint 750 Гбайт
Корпус Cooler Master Test Bench 1.0
Операционная система Windows 7 Ultimate x64
Версия драйверов для карт AMD Catalyst 10.9 (Catalyst 10.10 для Radeon HD 6850/6870)
Версия драйверов для карт NVIDIA ForceWare 260.63

Тестирование проводилось в следующих приложениях:

3DMark Vantage Пресеты Performance, High, Extreme
Battleforge DX 10 Максимальная детализация, 1920x1200/ 1680x1050 no AA/AF
Максимальная детализация, 1920x1200/ 1680x1050 4xAA/AF
Colin McRae DiRT 2 DX 11 Ультра детализация, 1920x1200/ 1680x1050 no AA/AF Ультра
детализация, 1920x1200/ 1680x1050 4xAA/AF
Crysis v 1.2 x64 DX 10
Just Cause 2 DX 10 Очень высокая детализация, 1920x1200/ 1680x1050 no AA/AF
Очень высокая детализация, 1920x1200/ 1680x1050 4xAA/AF.
Alien versus Predator DX 11 Benchmark Очень высокая детализация, 1920x1200/ 1680x1050 no AA/AF
Очень высокая детализация, 1920x1200/ 1680x1050 4xAA/AF
FarCry 2 DirectX 10 benchmark Ультра детализация, 1920x1200/ 1680x1050 no AA/AF
Ультра детализация, 1920x1200/ 1680x1050 4xAA/AF
Final Fantasy XIV Режим Low, 1280x720 no AA/AF Режим High, 1920x1200 no AA/AF
Mafia II Максимальная детализация, 1920x1200/ 1680x1050 no AA/AF, технология NVIDIA PhysX выключена
Максимальная детализация, 1920x1200/ 1680x1050 no 4xAA/16xAF, технология NVIDIA PhysX выключена
Metro 2033 DX11 Benchmark Максимальная детализация, 1920x1200/ 1680x1050 no AA/AF, технология NVIDIA PhysX выключена, DOF и тесселляция включена Максимальная детализация, 1920x1200/ 1680x1050 no 4xAA/16xAF, технология NVIDIA PhysX выключена, DOF и тесселляция включена
Unigine Heaven 2.0 Максимальная детализация, Тесселляция в режиме Extreme, 1920x1200/1680x1050 no AA/AF

В тестировании принимали участие следующие видеокарты:

  • AMD Radeon HD 5750 (720/4600);
  • AMD Radeon HD 5770 (850/4800);
  • GeForce GTS 450 1 Гбайт (783/1566/3600);
  • NVIDIA GeForce GTX 460 1 Гбайт (675/1350/3600);
  • NVIDIA GeForce GTX 470 1 Гбайт (608/1215/3348);
  • AMD Radeon HD 5850 (725/4000);
  • AMD Radeon HD 5870 (850/4800);
  • AMD Radeon HD 6850 (775/4000);
  • AMD Radeon HD 6870 (900/4200).

⇡ Разгон

Разгон осуществлялся силами утилиты MSI Afterburner 2.0.0. К сожалению, на данный момент в нашем арсенале не оказалось программы, способной повышать напряжение на графическом ядре Radeon HD 6850/6870. Именно поэтому разгон проходился без повышения напряжения.

Несмотря на высокую номинальную тактовую частоту видеопамяти в 5000 МГц QDR, ни Radeon HD 6850, ни Radeon HD 6870 не смогли работать на частоте памяти выше 1050 (4200) МГц. Что касается роста частот GPU, то здесь ситуация немного лучше. Графический процессор Radeon HD 6850 смог стабильно работать на частоте 850 МГц, а видеочип Radeon HD 6870 осилил 930 МГц. Итоговые частотные формулы составили:

  • 850/4200 МГц для Radeon HD 6850;
  • 930/4200 МГц для Radeon HD 6870.

По правде говоря, от новинок мы ожидали большего. Впрочем, не разгоном единым. Посмотрим, на что способны новинки в современных играх.

⇡ Температура и энергопотребление

В офисном режиме графический процессор Radeon HD 6870 оказался холоднее всех своих коллег, в то время как Radeon HD 6850 показал один из худших результатов, сопоставимых с показателями Radeon HD 5830.

В игровом режиме Radeon HD 6850 вновь оказался на уровне Radeon HD 5830, а вот Radeon HD 6870 разогрелся несколько больше своего коллеги Radeon HD 5850, впрочем, если Radeon HD 6870 окажется быстрее, то такая разница в температуре будет вполне оправдана, тем более, что Radeon HD 6870 показал не самый плохой результат.

Максимальная нагрузка на видеокарту заставила графический процессор Radeon HD 6870 разогреться до 80 градусов Цельсия, в то время как GPU Radeon HD 5850, как и GPU GeForce GTX 460 оказались на 5 градусов горячее. Не подвёл и Radeon HD 6850, который хоть и не оказался также холоден как Radeon HD 5770, но всё же не догнал Radeon HD 5830, что в данном случае - несомненный плюс.

Технологии энергосбережения, реализованные в видеокартах AMD Radeon HD 5xxx и 6xxx, справляются с поставленной задачей вполне успешно. Все видеокарты семейства Radeon HD показывают близкие результаты, впрочем, GeForce GTS 450 и GeForce GTX 460 тоже не отстают. Единственный аутсайдер - GeForce GTX 470, который, будучи установлен на наш тестовый стенд, повлиял на энергопотребление системы не лучшим образом.

В режиме игровой и максимальной нагрузки в лидерах по энергопотреблению оказались системы с установленными ускорителями Radeon HD 5750 и Radeon HD 6850, в то время как остальные решения показывают худшие результаты, особенно это касается ускорителей GeForce GTX 460 и GeForce GTX 470, которые заметно поднимают уровень энергопотребления системы.

Назвать новые ускорители AMD Radeon HD 6850/6870 лидерами с точки зрения температуры GPU вряд ли возможно, поскольку при типичной игровой нагрузке новинки оказались на уровне или чуть хуже, чем близкие по характеристикам продукты предыдущего поколения. Впрочем, недостатком это также не является, поскольку достигнутые в ходе тестирования температуры не опасными для работы ускорителя. Что же касается энергопотребления, то здесь обе новинки на коне. Система с установленным ускорителем Radeon HD 6870 потребляет чуть меньше энергии, чем эта же система с установленным Radeon HD 5850, не говоря уже о продуктах конкурента, которые оказываются заметно менее экономичными. В свою очередь Radeon HD 6850 вообще потребляет меньше всего энергии в своем классе.

Ускоритель AMD Radeon HD 6850 показывает результат, сравнимый с тем, что демонстрирует нам Radeon HD 5830, и это несмотря на ощутимый перевес последнего в количестве функциональных блоков и частоте. При этом Radeon HD 6850 почти во всех режимах, за исключением Performance, проигрывает GeForce GTX 460. А вот у Radeon HD 6870 дела обстоят немного лучше. Этот ускоритель смог не только побороть “старичка” Radeon HD 5850, но и слегка обойти по сумме баллов GeForce GTX 470! Интересно, как будут обстоять дела в реальных игровых приложениях.

В Battleforge AMD Radeon HD 6850 удаётся без особого труда расправиться с основным конкурентом в лице GeForce GTX 460 во всех без исключения режимах. Интересно, что перед натиском HD 6850 не может устоять и Radeon HD 5830, проигрыш которого усиливается после включения режима полноэкранного сглаживания. Судя по всему, движок Battleforge отреагировал таким образом на большее количество блоков растеризации HD 6850. Тем временем Radeon HD 6870 оказывается быстрее Radeon HD 5850, особенно это видно в тяжёлых режимах со сглаживанием и фильтрацией, где серьёзный вклад в результат вносит показатель ПСП, а также более высокая частота GPU HD 6870. Что же касается противостояния с GTX 470, то здесь ситуация неоднозначная. C одной стороны, Radeon HD 6870 оказывается быстрее GTX 470 в режимах без использования MSAA/AF, с другой же, в тяжёлых режимах вперёд вырывается GeForce GTX 470.

В DiRT 2 ускоритель Radeon HD 5850 почти всегда оказывался слабее GeForce GTX 470, однако теперь за "красных" есть кому постоять. Новый Radeon HD 6870 оказался не только более производительным, чем HD 5850, но и смог опередить GeForce GTX 470 практически во всех режимах. Что же касается Radeon HD 6850, то и этот новичок показывает хорошие результаты. В лёгких режимах HD 6850 лишь немного отрывается от GeForce GTX 460 с 1 Гбайт видеопамяти, а вот в режимах с AA/AF преимущество становится более очевидным и Radeon HD 6850 уходит вперёд.

Судя по результатам, полученным в Far Cry 2, работа инженеров и программистов AMD не прошла даром. Ускоритель Radeon HD 6870 не просто догоняет, но и, порой, слегка обходит своего старшего брата Radeon HD 5870! И это без разгона! Стоит также заметить, что GeForce GTX 470 хоть и опережает Radeon HD 6870, но перевес уже не такой существенный, как, скажем, в случае с Radeon HD 5850.

Аналогичная ситуация складывается и в случае с Radeon HD 6850. Да, в Far Cry 2 GeForce GTX 460 всё-таки немного быстрее, однако разница настолько мала, что вряд ли кто-то обратит на неё серьёзное внимание.

Как мы уже неоднократно отмечали, в Just Cause 2 решения AMD выглядят лучше, чем продукты NVIDIA. В сегодняшней схватке ничего не изменилось. Все представленные решения, за исключением Radeon HD 5830, HD 5770 и HD 5750 оказываются быстрее GeForce GTX 470.

В самом начале материала мы говорили о том, что новые ускорители Radeon HD 6850 и Radeon HD 6870 на базе GPU Barts получили усовершенствованный блок тесселляции. В процессе тестирования нам было интересно выяснить, скажется ли это улучшение на расстановке сил в современных играх с тесселляцией. Так вот, Alien versus Predator как раз из таких проектов, где можно посмотреть на результат “апгрейда”. Как и раньше, в лёгких режимах решения AMD обгоняют своих конкурентов из лагеря NVIDIA. А вот в максимально сложных сценах после активации полноэкранного сглаживания решения AMD начинали отставать и уступали пальму первенства продуктам калифорнийцев. В этот раз ситуация немного поменялась. Оба новичка из красного лагеря показали лишь чуть-чуть более высокий результат, чем их старые коллеги по цеху, однако этого оказалось достаточно, чтобы немного обойти GeForce GTX 460 и GeForce GTX 470.

Результаты тестирования в Final Fantasy XIV Official Benchmark в особых комментариях не нуждаются. И Radeon HD 6850, и Radeon HD 6870 одержали уверенную победу в своей ценовой категории. Остаётся лишь отметить, что авторы этого теста предусмотрели свои оценки “играбильности” для разных диапазонов в баллах:

  • Возможность запуска игры при любых настройках качества без риска получить даже незначительные “тормоза”;
  • Очень высокая производительность. Возможно играть на очень высоких настройках качества даже при высоких разрешениях;
  • Высокая производительность. Игра должна неплохо идти на высоких настройках в высоком разрешении;
  • Достаточная производительность. Игра будет хорошо работать с настройками по умолчанию. Выбор разрешения зависит от производительности видеосистемы;
  • Стандартная производительность. Игра будет хорошо работать только с настройками по умолчанию;
  • Даже с настройками по умолчанию будут наблюдаться небольшие “тормоза”;
  • Игра может работать, но настройка качества уже вряд ли избавит её от "торможений";
  • [До 1500] Недостаточная производительность для игры даже с минимальными настройками.

На наш взгляд, сегодня на рынке не так много игр, которые смогут потягаться с Metro 2033 в качестве графики. Масса деталей, сложная геометрия, реалистичные, а потому ресурсоемкие физические эффекты и т.д. заставляют игрока целиком погрузиться в виртуальный мир. К сожалению, при максимальных настройках ни один из представленных сегодня ускорителей не смог справить с бенчмарком без нареканий.

Расстановка сил такова: ускорители Radeon HD 6850 и HD6870 благодаря усовершенствованному блоку тесселляции в лёгких режимах смогли не только обойти Radeon HD 5830 и Radeon HD 5850, соответственно, но и потягаться с прямыми конкурентами из лагеря NVIDIA. Однако после включения полноэкранного сглаживания дела обстоят не так хорошо - в сверхтяжёлых режимах производительность продуктов AMD заметно падает, чем незамедлительно пользуются конкуренты.

Lost Planet 2 - одна из самых новых игр с поддержкой DirectX 11. На максимальной детализации даже Hi-End ускорители порой показывают недостаточную для комфортной игры производительность. Особенно это касается самых тяжёлых режимов, с активированным полноэкранным сглаживанием и анизотропной фильтрацией. Как показали наши тесты, в эту игру лучше всего играть на ускорителях NVIDIA, разумеется, если в ближайшее время в драйверах AMD не появится ряд оптимизаций. Без AA//AF Radeon HD 6870 смог приблизиться к скоростным показателям GeForce GTX 470 только после разгона, и то, только в разрешении 1920x1200. Ну а в режимах со сглаживанием все представители зелёного лагеря чувствуют себя достаточно уверенно, обходя даже разогнанные продукты соперника.

В целом, по результатам, полученным в Mafia 2, можно сказать, что новые ускорители Radeon HD 6850/6870 оказываются быстрее своих коллег - Radeon HD 5830/5850 и идут наравне с продуктами конкурентов, то обгоняя, то уступая им по величине среднего FPS.

В одной из наших предыдущих статей мы уделили особое внимание тесселляции и производительности современных видеокарт при её включении. Тогда мы выяснили, что при активации сложных режимов тесселляции решения NVIDIA показывают себя довольно хорошо. В этот раз, мы также заинтересовались вопросом производительности при экстремальной детализации тесселляции. В качестве примера нами была измерена производительность графических ускорителей в бенчмарке Unigine Heaven 2.0 в двух разрешениях при максимальной степени детализации. По результатам тестирования можно смело сказать, что проведённые инженерами AMD модификации, безусловно, пошли на пользу Radeon HD 6850 и Radeon HD 6870, ведь даже неразогнанный ускоритель Radeon HD 6870 обходит своего старшего собрата HD 5870. Тем не менее, решения NVIDIA по-прежнему несколько быстрее. Теперь же самое время подвести итоги.

⇡ Выводы

Изучив новые графические ускорители AMD Radeon HD 6850/6870, мы с уверенностью можем сказать, что новинки удались на славу. На данный момент AMD не нуждается в революциях, ведь её графические решения прекрасно справляются практически со всеми необходимыми задачами. А вот эволюционное развитие не мешает никогда, и Radeon HD 6850/6870 тому хороший пример. Эти решения уверенно обходят в играх не только “старичков” в лице Radeon HD 5830/5850, но в некоторых случаях вплотную подбираются к флагману - Radeon HD 5870, а всё благодаря ряду изменений, делающих GPU Barts более сбалансированными, чем их предшественники. Кроме того, нельзя не отметить и другие приятные изменения, которые пришли на рынок вместе с новыми ускорителями. Это MLAA, обновлённый алгоритм анизотропной фильтрации, поддержка новых Eyefinity-режимов и т.д. Единственное, что нас огорчило, так это слабый потенциал разгона. Впрочем, дождёмся появления в продаже решений от разных производителей и только тогда будем делать окончательный вывод. На данный момент мы считаем, что новые GPU Barts и видеокарты на их основе достойны хорошей оценки, а если ещё и цена в рознице будет на уровне рекомендованной…

AMD Radeon HD 6870M (или ATI Mobility Radeon HD 6870) - это мобильная видеокарта high-end класса с поддержкой DirectX 11. По сути, это тот же адаптер ATI Mobility Radeon HD 5870 с более медленной частотой ядра. Таким образом, производительность примерно такая же, как и в устаревших картах (до сих пор поддерживается UVD2 и первичная технология Eyefinity).

Интерфейс памяти ATI Mobility Radeon HD 6870 состоит из двух 64-битных контроллеров, которые ведут к 128-битной шине памяти, которая может получить доступ к 1024 Мб видеопамяти DDR3 или GDDR5 (512 Мб GDDR3). Если ноутбуком используется память (G)DDR3, то производительность будет не так хороша как с GDDR5.

HD 6870M использует 800 MADD-ядер (так называемых потоковых процессоров), которые сгруппированы в 160 пятимерных групп. Ядра аппаратно поддерживают все функции DirectX 11 (тесселяция, рендеринг прозрачных и полупрозрачных объектов, пост-обработка, прорисовка теней, HDR-текстуры). Кроме того, на чипе можно обнаружить 16 блоков ROP, 40 блоков TMU и 40 TAU-блоков. В итоге, 1040 Mio-транзисторов предлагают теоретическую мощность вычислений до 1.08 TFLOPS (к примеру, у ATI Mobility Radeon HD 5870 это значение равно 1.12 TFLOPS). К слову, 1 TFLOPS - это 1012 операций с плавающей запятой в секунду.

Для выполнения общих вычислений графическая карта использует ATI Stream, OpenCL и DirectCompute 11.

Игровая производительность графического процессора примерно такая же, как и у HD 5870 , то есть вполне приемлема для современных игр (2010 года). Во все игры, кроме Metro 2033 и Crysis, можно играть при большом разрешении на высоких настройках.

Серия 6800M карт Mobility Radeon HD оснащается устаревшим видеопроцессором UVD2, который служит для декодирования HD-видео с помощью графического адаптера. Он работает только с VC-1, H.264 и MPEG-2, но, в отличие от UVD3 (используется в 6900M-серии), не поддерживает DivX. С появлением Flash 10.1, карты 6800M-серии стали помогать в ускорении Flash HD видео (например, YouTube).
Так же, как и Radeon HD 5870, адаптер 6870M может передавать HD аудио форматы (например, Dolby True HD и DTS HD Master Audio) к HDMI 1.3a (8 каналов и 192 кГц / 24 бит).

6870M , по-прежнему, поддерживает первое поколение технологии Eyefinity (а не улучшенную Eyefinity +), благодаря которой можно подключать к графической карте до 6 мониторов одновременно (если только ноутбук оснащен достаточным количеством интерфейсов DisplayPorts). Из-за большого энергопотребления Mobility Radeon HD 6870M устанавливается в большие ноутбуки с хорошей (по всей видимости, громкой) системой охлаждения.

Если сравнивать адаптер с картами для настольных ПК, Mobility Radeon HD 6870M по производительности находится между Radeon HD 5750 и 5770 .

Производитель: AMD
Серия: Radeon HD 6870M 800@675MHz
Код: Granville-PRO
Потоки: 800 - unified
Тактовая частота: 675 MHz* МГц
Частота шейдеров: 675 MHz* МГц
Частота памяти: 1000* МГц
Разрядность шины памяти: 128 Бит
Тип памяти: DDR3, GDDR3, GDDR5
Максимум памяти: 1024 Мб
Общая память: нет
DirectX: DirectX 11, Shader 5.0
Транзисторов: 1040 млн
Технология: 40 нм
Дополнительно: Eyefinity (up to 6 displays), HD Audio (Dolby True HD, DTS HD), HDMI 1.3a, Avivo HD (UVD2.2)
Размер ноутбука: большой
Дата выхода: 04.01.2011

* Указанные тактовые частоты могут быть изменены производителем

Не так давно мы опубликовали материал о новой линейке видеокарт Radeon HD 6800 серии . В нем были рассмотрены все аспекты новых технологий, используемых в ускорителях этой линейки, а также улучшения, которым подверглись видеокарты на ядре Barts. Было отмечено, что ожидаемого изменения техпроцесса до 32-нм не произошло. Графические чипы нового поколения серии AMD Radeon HD 6800 все еще будут производиться по старому 40-нм техпроцессу, началом применения которого можно считать презентацию Radeon HD 4770, прошедшую еще в апреле 2009 года. Вся линейка Radeon HD 5000 тоже использовала 40-нм технологию. Всему виной, как сказал Эрик Демерсон (Eric Demers), являющийся техническим директором подразделения GPU в AMD, «приверженность проработанному техпроцессу на данный момент связана с экономическими причинами. Обращая внимание на получаемый сегодня процент рабочих кристаллов, компания столкнулась с выбором, запускать в массовое производство два 32-нм или три 40-нм GPU по одинаковой цене». Учитывая этот факт, в недалеком будущем AMD, скорее всего, откажется от 32 нм и приступит к освоению производства, используя технологию 28 нм.

Не изменяя техпроцесс, компании AMD будет проблематично позиционировать Barts как значимый шаг вперёд. Главным образом, новый GPU Barts отличается от своего предшественника серьезными изменениями в области оптимизации архитектуры, увеличением производительности на каждый ватт потребленной энергии и миллиметр площади, что улучшает общую эффективность. В нем также были доработаны главные недостатки предыдущей серии ATI Radeon HD 5800, связанные с малой производительностью обработки тесселяции и геометрии. Как уже было сказано ранее в наших обзорах, именно эти два недостатка стали самой серьезной проблемой видеокарт AMD по сравнению с конкурирующими графическими ускорителями компании NVIDIA.

Изначально ожидалось, что линейка AMD Radeon 6800 должна прийти на смену AMD Radeon 5800, но такого не случилось. Как видно из выше приведенной схемы, различий между ядрами Barts и Cypress практически нет. Однако простой подсчет количества движков SIMD, нам красноречиво говорит о значительно меньшей производительности обновленного GPU Barts XT по отношению к ядру Cypress (Radeon HD 5870).

AMD Radeon HD 6850

ATI Radeon HD 5870

ATI Radeon HD 5850

ATI Radeon HD 5830

ATI Radeon HD 4870

Кодовое имя

Barts XT

Число транзисторов

1,7 млрд.

Количество потоковых процессоров

Производительность, TFLOPs

Текстурных блоков

Фильтрация текстур, GTexels/s

Количество ROPs

Фильтрация пикселей, GPixels/s

Z/Stencil, GSamples/s

Частота ядра, МГц

Частота памяти, ГГц

1,05 (4,2 ГГц эффект-я) GDDR5

1,0 (4,0 ГГц эффект-я) GDDR5

1,2 (4,8 ГГц эффект-я) GDDR5

1,0 (4,0 ГГц эффект-я) GDDR5

1,0 (4,0 ГГц эффект-я) GDDR5

900 МГц (3,6 ГГц эффект-я) GDDR5

Разрядность шины памяти

256 бит

Пропускная способность памяти, ГБ/c

Кадровый буфер

Техпроцесс

TSMC 40 нм

Максимальное / минимальное энергопотребление, Вт

В графическом процессоре Radeon HD 6870 задействовано четырнадцать движков SIMD, каждый из них состоит из четырёх текстурных блоков и шестнадцати потоковых процессоров. Один потоковый процессор имеет пять блоков АЛУ (потоковых ядер). Это суммарно дает GPU 1120 потоковых ядер с 56 текстурными блоками. Результат обработки GPU выводится через четыре кластера выходной части конвейера рендеринга. В каждый кластер входят восемь конвейеров ROP (растровых операций), которые составляют суммарно тридцать два ROP-конвейера. 256-битный интерфейс памяти обеспечивается четырьмя 64-битными контроллерами памяти.

Численные характеристики архитектуры и спецификация видеокарт Radeon HD 6870 сильно похожи на таковые у Radeon HD 5830, но с удвоенной конечной частью конвейера рендеринга. Однако если рассматривать обратную сторону, то у Radeon HD 6870 используется та же самая конечная часть конвейера рендеринга, что и у Radeon HD 5870, но меньше шейдерных ядер. Для видеокарты Radeon HD 5830 главным недостатком было как раз уменьшенное в два раза количество блоков ROP, что вызвало задержки в производительности. Radeon HD 6870 можно назвать доработанным и улучшенным перевоплощением графического процессора Radeon HD 5830. В свое оснащение ядро Barts XT получило целых два управляющих UTDP (Ultra-Thread Dispatch Processor), в то время как у Cypress он был всего один, а также была улучшена часть GPU, отвечающая за обработку алгоритмов тесселяции. Такие изменения должны обеспечить почти двукратное превосходство нового решения в обработке потоков теселяции над графическими ускорителями предыдущей серии.

Еще одним существенным улучшением, которым обладает Radeon HD 6870 за счет оптимизированной структуры кристалла, стала возможность его работы на более высоких частотах, что существенно влияет на итоговую производительность. Частота Radeon HD 6870 составляет 900 МГц, а значит упрощенное ядро GPU Barts работает со значительно более высокой тактовой частотой, чем Radeon HD 5830 или даже Radeon HD 5850. Такое повышение частоты ведет к увеличению общей производительности GPU почти на 25% в сравнении с Radeon HD 5850, работающего с частотой 725 МГц. В итоге меньшее количество АЛУ и текстурных блоков у Radeon HD 6870, по сравнению с Radeon HD 5850, вполне компенсируется повышенной частотой работы ядра GPU, что практически уравнивает их производительность.

Все эти усовершенствования позволили Radeon HD 6870 быть более производительным, чем Radeon HD 5850, при меньшей на 25% площади кристалла. Такое изменение явно снижает энергопотребление в режиме бездействия и себестоимость производства самого ядра в целом. Эти два явных преимущества должны положительно сказаться на популярности конечного продукта. Память Radeon HD 6870 работает на «родной» частоте 1050 МГц (эффективная 4200 МГц), чуть быстрее чем у Radeon HD 5850 (1000 МГц). По заявлению производителей розничная цена Radeon HD 6870 составит $240, а это немного меньше чем $260 на Radeon HD 5850.

Теоретические сведения очень обнадеживают, но всегда хочется получить конкретные результаты в тестовых приложениях. Для этих целей в нашу лабораторию и попал видеоускоритель . Предоставленная компанией MSI модель является полной копией эталонного образца, выпускаемого на заводах компании AMD. Именно по этой причине наш обзор и тестирование, по сути, будет описывать эталонное решение Radeon HD 6870 от компании AMD.

Спецификация

В спецификации нет ничего необычного, все характеристики эталонного решения уже были перечислены нами выше, теперь лишь стоит повторить их для конкретного экземпляра, продаваемого под торговой маркой MSI.

MSI Radeon HD 6870 (R6870-2PM2D1GD5)

Графическое ядро

AMD Radeon HD 6870 (Barts XT)

Конвейера

1120 унифицированных потоковых

Поддерживаемые API

DirectX 11 (Shader Model 5.0)
OpenGL 4.1

Частота ядра, МГц

Объем (тип) памяти, МБ

Частота памяти (эффективная), МГц

Шина памяти, бит

Стандарт шины

PCI Express X16 2.1

Максимальное разрешение

До 4 дисплеев по 1920x1200 каждый
До 2560x1600 Dual-link DVI или 1920x1200 Single-link DVI
До 2048x1536 VGA (через переходник DVI-to-VGA)
До 1920x1200 HDMI 1.4
До 2560x1600 DisplayPort

2x DVI-I (VGA через переходники)
1x HDMI 1.4
2x mini DisplayPort (DisplayPort через переходники)

Поддержка HDCP

Есть
Декодирование MPEG-2, MPEG-4, DivX, WMV9, VC-1 и H.264/AVC, MVC, Adobe Flash

Драйверы

Свежие драйверы можно скачать с:
- сайта производителя GPU :
- сайта поддержки .

Сайт производителя

Из таблицы видны несколько новшеств, которыми стали обладать «референсные» видеокарты Radeon HD 6870. Порт DisplayPort 1.2 позволяет выводить изображение сразу на несколько мониторов с помощью специального хаба, причем для каждого монитора может устанавливаться разное разрешение. Поддерживается до четырех дисплеев с разрешением до 1920x1200 каждый. Однако суммарно к ускорителю можно подключить до шести мониторов с использованием двух хабов и двух разъемов DVI-I, но уже с разрешением до 1600х900.

Наличие HDMI 1.4 позволит пользователю воспользоваться технологией передачи 3D-стереоизображения, что необходимо для подключения 3D-мониторов. Появилась поддержка новых технологий OpenGL 4.1 и AMD HD3D, а также остались уже хорошо знакомые нам по 5800-й серии ускорителей технологии AMD Eyefinity и AMD EyeSpeed. Такое разнообразие новых возможностей использования ускорителя станет достойным ответом компании AMD на предложенные NVIDIA в 400-й серии частично схожие технологические решения.

Видеоускоритель представлен в плотной коробке. В ее дизайне подчеркнута возможность работы с фирменной утилитой разгона MSI Afterburner. Вверху виден логотип компании, а с правой стороны упомянут производитель GPU AMD RADEON GRAPHICS, что говорит о выпуске данной линейки уже именно компанией AMD, а не ATI (AMD) как это было ранее. Ниже указано само графическое ядро R6870, наличие у ускорителя 1 ГБ GDDR5 памяти, поддержка DirectX 11 и присутствие на задней панели двух разъемов mini DisplayPort. К разъемам mini DisplayPort можно подключить до четырех экранов через специальный хаб, используя технологию AMD Eyefinity. В самом низу присутствуют логотипы поддержки продуктом фирменных технологий MSI для разгона и использование на текстолите платы конденсаторов повышенной надежности и долговечности.

Последние две особенности более подробно описаны на обратной стороне коробки.

Здесь в верхней части указана сама модель графического ускорителя R6870-2PM2D1GD5, а ниже подробно описана поддержка утилиты MSI Afterburner, позволяющей разгонять как один ускоритель, так и несколько установленных в режиме CrossFireX. Есть возможность сохранения профилей разгона, а также профилей с уменьшенными частотами работы видеокарты, что ведет к экономии электроэнергии и пониженному тепловыделению, а значит и снижению суммарного шума системы. Ниже указано использование в данной модели твердотельных конденсаторов, которые гарантируют 10 лет безотказной работы. Справа отмечены основные преимущества данного ускорителя на 30-ти языках. Упаковка оставляет впечатление качественного законченного продукта и имеет полноценную информацию о внутреннем содержимом.

Комплект поставки MSI Radeon HD 6870 (R6870-2PM2D1GD5) вполне достойный:

  • Два переходника с двух периферийных разъемов питания на один 6-контактный разъем питания видеокарты;
  • Мостик CrossFire;
  • Диск с драйверами и утилитами;
  • Краткая инструкция по установке видеокарты;
  • Переходник с mini DisplayPort на DisplayPort;
  • Переходник с DVI на VGA.

Вполне оправданный комплект, обеспечивающий 80% запросов обычного пользователя. Но для подключения группы дисплеев здесь явно придется докупить необходимые переходники или специальный хаб, с одновременной поддержкой до четырех мониторов.

В сравнении с флагманом от компании NVIDIA, видеокартой на GeForce GTX 480, новое решение от компании AMD выглядит более изящным. Это не только первое впечатление, но и судя по заявленным нововведениям компании AMD, ускорители на Radeon HD 6870 должны отличатся в два раза меньшим энергопотреблением при сравнимой в некоторых приложениях производительности. Видеокарта Radeon HD 6870 отличается от «топовых» решений обоих производителей меньшей длиной, она имеет, также как и Radeon HD 5870, два 6-контактных разъема дополнительного питания, находящихся на верхнем торце видеокарты. Подключение дополнительного питания не вызовет неудобств, а сами провода не будут мешать установке видеокарты, увеличивая ее длину за счет самих разъемов и отходящих от них проводов.

Что удивительно, эталонный образец имеет всего один разъем CrossFire. Скорее всего, впоследствии, появятся решения от другого производителя, имеющие два разъема CrossFire, которые очень полезны для повышения общей производительности видеосистемы при подключении данного ускорителя в режимах CrossFireX совместно с другими аналогичными моделями.

Задняя часть видеокарты AMD Radeon HD 6870 не имеет никаких технологических отверстий, здесь все закрыто пластиковым кожухом, гармонично дополняющим общий дизайн ускорителя. Приятно, что разъемы питания повернуты вверх – это позволяет ускорителю быть совместимым с большим числом корпусов.

Обратная сторона ускорителя не получила ни одного значимого элемента.

Благодаря двухслотовому дизайну системы охлаждения на задней панели ускорителя поместились пять разъемов подключения дисплеев (2х DVI-I, HDMI 1.4, 2х mini DisplayPort 1.2). Здесь же есть достаточно большая решетка отвода горячего воздуха из корпуса. Такое разнообразие разъемов подключения обеспечат AMD Radeon HD 6870 полную совместимость со всеми современными предложениями рынка устройств вывода изображения.

На лицевой стороне печатной платы можно выделить графический процессор и окружающие его восемь чипов видеопамяти. Здесь же находятся все элементы системы питания GPU и памяти ускорителя.

Частота работы графического процессора составляет 900 МГц. Сам чип Barts XT выполнен по 40 нм техпроцессу и содержит 1120 универсальных шейдерных конвейеров и тридцать два блока растеризации, а обмен данными между графическим ядром и памятью осуществляется через 256-битную шину.

При отсутствии нагрузки частота работы чипа снижается до 100 МГц, а видеопамять замедляется до 81 МГц (эффективная частота 324 МГц). При этом уменьшается и напряжение питания, что обеспечивает заметное снижение энергопотребления и температуры.

Видеопамять общим объемом 1 ГБ набрана восемью микросхемами стандарта GDDR5 производства Hynix H5GQ1H24AFR T2C со временем доступа 0,8 нс, что позволяет им работать на эффективной частоте до 5000 МГц. Поскольку результирующая частота работы чипов памяти на видеокарте немного ниже и составляет 4200 МГц, то остается хороший частотный коридор про запас, который, надеемся, можно будет задействовать при разгоне.

Ускоритель имеет 4+2-фазную схему питания. Здесь четыре фазы идут на GPU и реализованы при помощи контроллера Chil CHL8214, имеющего поддержку протокола I2C. Этот протокол должен обеспечить софтвольтмод при помощи новой версии утилиты MSI Afterburner. Идущая в комплекте с видеокартой утилита MSI Afterburner 2.0.0 не позволила поменять напряжение на GPU.

Сама система охлаждения состоит из двух частей. Металлический кожух через термоинтерфейс соприкасается со всеми горячими элементами платы: чипами видеопамяти и элементами подсистемы питания. Для охлаждения GPU используется отдельная конструкция - массивный алюминиевый радиатор с тремя медными тепловыми трубками разного диаметра, которые припаяны к медной пластине, соприкасающейся с кристаллом GPU. Центральная медная трубка увеличенного диаметра должна способствовать более эффективному отводу тепла от кристалла GPU. Термоинтерфейс достаточно вязкий, что тоже должно положительно отразится на общей эффективности системы охлаждения. Вентилятора турбинного типа, имеющего стандартные размеры, с излишком хватает для охлаждения графического процессора. В целом систему охлаждения можно назвать улучшенной и более технологичной по сравнению с эталонной турбиной, используемой на горячих моделях 5800-й серии.

Для оценки эффективности системы охлаждения мы использовали утилиту FurMark , а детальный мониторинг осуществлялся при помощи GPU-Z и MSI Afterburner .

Работая на штатных частотах и управляя скоростью вращения турбины автоматически, графический процессор прогрелся до 82°С. Учитывая, что при этом скорость вращения турбины была всего 35% от максимальной и весь кулер работал тихо, мы можем говорить о слабом тепловыделении ускорителя и отличной работе «референсной» системы охлаждения в автоматическом режиме.

После того, как мы в ручном режиме установили скорость вращения турбины на максимум, не убирая нагрузки, кулер начал заметно шуметь, но температура графического ядра упала до 67 градусов.

В целом система охлаждения, применяемая на эталонном решении AMD Radeon HD 6870, показала высокую эффективность, при этом она оставалась достаточно тихой в работе.

При тестировании использовался Стенд для тестирования Видеокарт №2

Процессор Intel Core 2 Quad Q9550 (LGA775, 2,83 ГГц, L2 12 МБ) @3,8 ГГц
Материнские платы ZOTAC NForce 790i-Supreme (LGA775, nForce 790i Ultra SLI, DDR3, ATX)GIGABYTE GA-EP45T-DS3R (LGA775, Intel P45, DDR3, ATX)
Кулеры Noctua NH-U12P (LGA775, 54,33 CFM, 12,6-19,8 дБ)Thermalright SI-128 (LGA775) + VIZO Starlet UVLED120 (62,7 CFM, 31,1 дБ)
Дополнительное охлаждение VIZO Propeller PCL-201 (+1 slot, 16,0-28,3 CFM, 20 дБ)
Оперативная память 2x DDR3-1333 1024 MБ Kingston PC3-10600 (KVR1333D3N9/1G)
Жесткие диски Hitachi Deskstar HDS721616PLA380 (160 ГБ, 16 МБ, SATA-300)
Блоки питания Seasonic M12D-850 (850 Вт, 120 мм, 20 дБ)Seasonic SS-650JT (650 Вт, 120 мм, 39,1 дБ)
Корпус Spire SwordFin SP9007B (Full Tower) + Coolink SWiF 1202 (120x120x25, 53 CFM, 24 дБ)
Монитор Samsung SyncMaster 757MB (DynaFlat, 2048x1536@60 Гц, MPR II, TCO"99)

Выберите с чем хотите сравнить Radeon HD6870 1GB DDR5 MSI

Оценивая полученные результаты тестирования не нужно забывать, что производительность графического ускорителя кроме всего прочего зависит еще и от оптимизации драйверов. Поэтому результаты вышли не совсем однозначными. В половине протестированных игр производительность видеокарты MSI Radeon HD 6870 располагается между показателями Radeon HD 5870 и Radeon HD 5850. При этом порой Radeon HD 6870 оказывается наравне с Radeon HD 5870. В тоже время есть пара тройка игр, где видеоускоритель Radeon HD 6870 уступает даже Radeon HD 5850. Таким образом, все же, по уровню производительности Radeon HD 6870 можно приблизительно считать равным Radeon HD 5850. Но это в играх без тесселяции, то есть c поддержкой лишь DirectX 9 и DirectX 10. Сравнивая производительность MSI Radeon HD 6870 с видеокартами NVIDIA, можно отметить превосходство над GeForce GTX 460 с 1 ГБ памяти, достигающее порою 20%. Видеоускоритель на GeForce GTX 470 во многих тестах находится наравне с MSI Radeon HD 6870, но попадаются игры в которых первый имеет заметно лучшую производительность.

По результатам синтетического приложения Uniengine Heaven 1.0 мы можем констатировать явный прогресс видеоускорителя AMD Radeon HD 6870 при построении 3D-сцен с тесселяцией. Конечно же, двукратного увеличения производительности в тестах с тесселяцией у графического ядра Barts по отношению к Cypress нет, но прирост явно заметен. В итоге видеоускоритель AMD Radeon HD 6870 показал очень схожий с GeForce GTX 470 результат, что само по себе показательно.

Разгон MSI Radeon HD 6870 (R6870-2PM2D1GD5)

Видеокарта при охлаждении своей стандартной турбиной, работающей в режиме максимальной эффективности, смогла стабильно функционировать на частотах: 975 МГц для графического ядра (+8,3%) и 1160 МГц (+10,4%) для видеопамяти, что обеспечило ее функционирование на эффективной частоте 4640 МГц. Это не самый лучший результат для GPU, но ситуация должна кардинально измениться при выходе утилиты, позволяющей повышать напряжение питания на графическом ядре. Микросхемы памяти тоже не смогли исчерпать полностью свой потенциал, но прирост в 10% тоже можно считать вполне нормальным результатом. Теперь стоит оценить полученный нами прирост производительности от разгона в реальных тестах.

Как видно из таблицы, увеличение производительности в некоторых приложениях достигает 10%, что обеспечит приятный бонус для владельца, но этого будет недостаточно для изменения общей картины эффективности среди видеокарт такого же класса.

Энергопотребление

Энергопотребление видеокарты часто является важным критерием выбора. В таблице ниже вы можете оценить уровень энергопотребления систем с современными видеокартами по сравнению с MSI Radeon HD 6870 1GB GDDR5.

Тестовый пакет

Стандартные частоты

Разогнанная видеокарта

Прирост производительности, %

Far Cry 2, Maximum Quality, NO AA/AF, fps

MSI GeForce GTS 450 1GB GDDR5 CYCLONE

Sapphire Radeon HD 5770 1 GB GDDR5 FleX

ZOTAC GeForce GTX 460 1GB GDDR5

GIGABYTE Radeon HD 5850 1GB GDDR5

MSI Radeon HD 6870 1GB GDDR5

GIGABYTE Radeon HD 5870 1GB GDDR5

ZOTAC GeForce GTX 470 AMP! 1280 MB GDDR5

ZOTAC GeForce GTX 480 1,5 GB GDDR5

MSI Radeon HD 5970 2GB GDDR5

Энергопотребление видеокарты MSI Radeon HD 6870 1GB GDDR5 условно можно приравнять к энергопотреблению Radeon HD 5850 1GB GDDR5. Немного меньший уровень энергопотребления имеет решение конкурента на ускорителе GeForce GTX 460 c 1GB памяти GDDR5. Видеокарта же GIGABYTE Radeon HD 5870 1GB GDDR5 по «расходу» энергии превосходит MSI Radeon HD 6870 1GB GDDR5, собственно, также как и по производительности. Как видите все на своих местах, поэтому очень сложно говорить о каком-то существенном превосходстве графического ядра Barts над Cypress в плане лучшего отношения производительности на ватт затраченной энергии. Возможно, энергопотребление нового чипа и уменьшилось, но не очень сильно.

Отдельным «особняком» стоят два других «топовых» ускорителя NVIDIA: GeForce GTX 470 и GeForce GTX 480. По энергопотреблению GeForce GTX 470 уступает Radeon HD 6870 приблизительно 60 Вт в режиме нагрузки, а разница между энергопотреблением GeForce GTX 480 и Radeon HD 6870 составляет целых140 Вт. Заметно, что инженеры NVIDIA постарались выжать максимум из своего графического ускорителя на GF100. В итоге энергопотребление GeForce GTX 480 1,5 GB GDDR5 получилось почти такое же, как у двухчиповой видеокарты MSI Radeon HD 5970 2GB GDDR5.

Выводы

Первенец нового поколения видеокарт компании AMD стал не столь производительным, как ожидалось, но учитывая рекомендованную цену за решения на ядре Barts, можно смело говорить об их высокой конкурентоспособности по критерию цена/производительность. Хотя ценовой критерий выбора еще можно оспорить в виду временного отсутствия моделей Radeon HD 6870 в свободной продаже. Суммарно можно во многом похвалить 6800-ю серию ускорителей компании AMD за внедрение в новой линейке большого количества новых возможностей, таких как: использование DisplayPort 1.2 с поддержкой до 4 дисплеев через хаб; HDMI 1.4, позволяющего пользователю воспользоваться технологией передачи 3D-изображения; поддержка новых технологий OpenGL 4.1 и AMD HD3D. Не оставили в стороне инженеры компании AMD и такие уже хорошо известные технологии как AMD Eyefinity и AMD EyeSpeed. К хорошим качествам ускорителей на Radeon HD 6870 можно отнести их уменьшенное по сравнению с 5800-й серией тепловыделение и увеличенную эффективность на каждый миллиметр площади кристалла и очень низкий уровень шума стандартной турбины, даже при максимальной нагрузке он ниже среднего.

Непосредственно тестируемая нами видеокарта MSI Radeon HD 6870 (R6870-2PM2D1GD5) мало чем отличается от эталонного образца, но инженеры компании MSI в скором времени обеспечат фирменную утилиту MSI Afterburner возможностью изменения напряжения на GPU видеоускорителя, что должно существенно повлиять на его возможности разгона. Видеокарты на Radeon HD 6870 должны нивелировать то небольшое преимущество, которое получила компания NVIDIA с выходом 400-й серии видеокарт. Для этого ядро Barts компании AMD имеет все предпосылки, а главное, достаточно низкую цену за графические ускорители на Radeon HD 6870.

Достоинства:

  • Низкая рекомендованная цена;
  • Низкий уровень шума стандартной турбины;
  • Поддержка технологии ATI Eyefinity с подключением до 6 дисплеев;
  • Поддержка DirectX 11 (Shader Model 5.0), OpenGL 4.1 и AMD HD3D.
  • Наличие DisplayPort 1.2 с поддержкой до 4 дисплеев через хаб;
  • Поддержка HDMI 1.4 для технологии передачи 3D-стереоизображения;
  • опубликовано 03-11-2010

    Статья прочитана 34238 раз(а)

    Подписаться на наши каналы
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png