Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Общее устройство микроконтроллеров: основа микроконтроллера, периферийные устройства

Ну вот, уважаемые читатели, мы и подошли к одному из главных вопросов в деле изучения микроконтроллеров – устройству микроконтроллеров.

Микроконтроллеры фирмы ATMEL

Для начала давайте условимся, что слово микроконтроллер в тексте будет прописываться двумя заглавными буквами – МК , так проще и удобнее.

Немножко истории.
Фирма ATMEL была создана в 1984 году, ее полное название – Advanced Technologi Memory and Logic.
Первый МК фирма выпустила в 1993 году.
В 1995 году была придумана новая архитектура процессорного ядра для МК, так называемое RISС-ядро (что это за диво, вы при желании можете ознакомиться в любой популярной литературе, а мы отвлекаться не будем).
Новую архитектуру МК назвали AVR. Идея новой архитектуры ядра оказалась очень удачной, и уже с 1997 года ATMEL начала серийный выпуск МК на основе RISC-ядра.

В настоящее время ATMEL выпускает в год несколько миллиардов МК разнообразных типов. Из всего этого множества мы выделим два семейств восьмиразрядных МК :

- TINY AVR
MEGA AVR

Семейство Tiny – более простые, менее навороченные и, соответственно, более дешевые.
Семейство Mega – более навороченные, но и стоят дороже.
В каждом семействе большое разнообразие различных МК, что позволяет нам выбрать для создаваемой конструкции наиболее оптимальный вариант МК как по его возможностям, так и по цене.

Почему эти семейства МК называются восьмиразрядными (заодно узнаем что такое шины).

МК – сложная штука, в нем (в одном корпусе) размещено много разных устройств, которые, естественно, должны общаться между собой – передавать или принимать данные (нули и единички), передавать и принимать различные сигналы управления, записывать данные в память или считывать их из памяти. Общение устройств между собой а также с «внешним миром» происходит с помощью шин .
Шину можно представить как жгут с несколькими проводами с помощью которых все устройства соединены между собой и по которым передаются цифровые сигналы – логические нули и логические единицы.

В МК имеется три шины :
1. Шина данных (Data Bus – по английски).
Шина данных - шина, предназначенная для передачи информации.
Эта шина служит только для передачи различных данных между устройствами. Эта шина двунаправленная: по ней устройство может как передавать, так и принимать данные. МК семейства Tiny и Mega могут за один раз передать или принять восемь бит информации (бит – наименьшая единица измерения данных в цифровой технике, одна логическая единица или один логический ноль – это один бит информации) . Такая шина называется восьмиразрядной (иногда встречается название – восьмибитовая), а отсюда и сами МК – восьмиразрядными (если грубо, то можно сказать, что все устройства соединены жгутами из восьми проводов).
Минимальная разрядность шины данных – 8 бит (меньше не бывает). Современные компьютеры имеют 64-разрядную шину данных. Разрядность шины данных всегда кратна 8 (восьмиразрядная, шестнадцатиразрядная, тридцатидвухразрядная…)
2. Шина адреса (Addr Bus – по английски).
Шина адреса - шина, на которой в ходе выполнения программы выставляется адрес ячейки памяти, к которой в данный момент времени должен обратиться МК чтобы считать или следующую команду, или данные, или в которую необходимо записать данные.
3. Шина управления (Control Bus – по английски).
Шина управления – шина, а точнее набор линий (проводников) по которым передаются управляющие сигналы с помощью которых определяется как будет происходить обмен информацией – или ее считывание из памяти, или запись в память, а также некоторые специальные сигналы – сигнал готовности, сигнал сброса.
Небольшой пример работы шин.
Необходимо записать число 60 в ячейку памяти:
– на шине адреса выставляется адрес ячейки памяти в которую необходимо записать число
– на шине управления выставляется сигнал записи
– по шине данных передается число 60, которое записывается в выбранную ячейку памяти.
Ну вот, как общаются устройства в МК между собой, мы вроде-бы разобрались. Идем дальше.

В современном МК много различных устройств, в каком-то типе больше, а в каком-то меньше, а кроме того, в разных МК эти устройства могут различаться по своим характеристикам. Но в МК есть то, что составляет его основу и присутствует во всех типах – процессорное ядро (микропроцессорная система – по аналогии с компьютером), которое состоит из трех основных устройств:
1. АЛУ – арифметико-логическое устройство (микропроцессор) которое выполняет все вычисления (выполняет нашу программу).
2. Память -предназначена для хранения программ, данных, а также любой другой нужной нам информации.
3. Порты ввода – вывода . Это выводы МК с помощью которых он общается с «внешним миром». При передаче информации МК выставляет на своих выводах соответствующие логические уровни (0 или 1). При приеме информации МК считывает с этих выводов логические уровни, которые выставлены внешним устройством.
Это трио – основа МК:

Эту основу МК мы с вами рассмотрим очень подробно, но в следующей статье, как и то, что вы прочтете ниже.

В зависимости от модели МК в нем могут присутствовать дополнительные или, как еще говорят – периферийные устройства . Все периферийные устройства работают сами по себе, т.е. отдельно от процессора МК и не мешают выполнению программы. Когда периферийное устройство выполнит свою работу, оно может об этом сообщить процессору, а может и не сообщать – зависит от нашего желания, сами потом посмотрим на результаты.

1. Аналоговый компаратор
Присутствует во всех моделях МК
Аналоговый компаратор – устройство сравнения. Основная задача компаратора – это сравнение двух напряжений: одно из них – образцовое (с чем сравниваем), а второе – измеряемое (сравниваемое). Если сравниваемое напряжение больше образцового – компаратор вырабатывает сигнал логической единицы. Если сравниваемое напряжение меньше образцового – компаратор формирует на своем выходе логический ноль.
С помощью компаратора можно, к примеру, контролировать напряжение на заряжаемом аккумуляторе. Пока напряжение не достигнет нужного уровня, на выходе компаратора – логический ноль, как только напряжение аккумулятора достигло уровня нужного нам, компаратор вырабатывает логическую единицу, и значит можно завершить зарядку аккумулятора.

2. АЦП – аналогово-цифровой преобразователь.
Имеют не все МК.
АЦП – преобразователь аналогового напряжения в цифровую форму.
Аналоговое напряжение – это напряжение которое изменяется по напряжению во времени. Например – синусоидальный сигнал с выхода генератора частоты, напряжение в бытовой розетке, звуковой сигнал на колонках.
АЦП постоянно анализирует на своем входе величину напряжения и выдает на своем выходе цифровой код, соответствующий входному напряжению.
Примеры применения:
– цифровой вольтметр или амперметр
– процессорный стабилизатор напряжения
МК, которые имеют АЦП, также имеют раздельное питание для цифровой и для аналоговой частей.

3. Таймер/счетчик
Присутствует во всех моделях МК, но в разных количествах – от 1 до 4, и с разными возможностями.
Таймер/счетчик – это как бы два устройства в одном флаконе: таймер + счетчик.
Таймер – устройство, которое позволяет формировать временные интервалы. Таймер представляет собой цифровой счетчик который считает импульсы или от внутреннего генератора частоты, или от внешнего источника сигнала.
С помощью таймера/счетчика можно:
– отсчитывать и измерять временные интервалы
– подсчитывать количество внешних импульсов
– формировать ШИМ-сигналы
К примеру, мы хотим создать прибор позволяющий измерять частоту входного сигнала (частотомер). В этом случае мы можем использовать два счетчика/таймера. Первый будет отсчитывать временные интервалы равные 1 секунде, а второй будет считать количество импульсов за промежуток времени в 1 секунду которые отсчитывает первый таймер. Количество импульсов подсчитанное вторым таймером/счетчиком за 1 секунду будет равно частоте входного сигнала.
ШИМ - широтно-импульсный модулятор, предназначен для управления средним значением напряжения на нагрузке.
ШИМ – один из вариантов работы таймера/счетчика, позволяющий генерировать на выходе МК прямоугольное импульсное напряжение с регулируемой длительностью между импульсами (скважностью), которое применяется в различных устройствах:
– регулирование частоты вращения электродвигателя
осветительные приборы
– нагревательные элементы

4. Сторожевой таймер.
Есть во всех моделях МК. Может быть включен или выключен по усмотрению программиста.
У сторожевого таймера только одна задача – производить сброс (перезапускать программу) МК через определенный промежуток времени.
При работе МК могут возникать различные ситуации при которых его нормальная работа будет нарушена (внешние помехи, дурацкая программа, за которую надо голову оторвать программисту). В таких случаях говорят, что МК «завис».
При нормальной работе МК и включенном сторожевом таймере, программа должна периодически производить сброс сторожевого таймера (а периодический сброс мы должны сами предусмотреть в программе) еще до того, как он должен сработать и перезапустить МК. Если программа «зависла», то сброса сторожевого таймера не будет, и через определенный промежуток времени он перезапустит МК.

5. Модуль прерываний.
Прерывание – сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей программы приостанавливается и управление передается обработчику прерывания, который реагирует на событие и обслуживает его (выполняется программа, которую должен выполнить МК при наступлении соответствующего события – прерывания), после чего возвращается в прерванную программу.
Прерывания бывают внутренние и внешние .
Внутренние прерывания могут возникать при работе периферийных устройств МК (АЦП, компаратор, таймер и т.д.)
Внешнее прерывание – событие, которое возникает при наличии сигнала на одном из специальных входов МК (таких специальных входов для внешних прерываний у МК может быть несколько).
Пример.
Внутреннее прерывание. Собрали на МК устройство, которое еще обладает и функцией зарядки резервного источника питания. МК выполняет свою основную программу, аналоговый компаратор в это время проверяет напряжение на аккумуляторе. Как только напряжение аккумулятора снизится ниже допустимого, компаратор вырабатывает сигнал процессору – прерывание, процессор останавливает выполнение основной программы и переходит к выполнению программы прерывания, вызванного компаратором – к примеру, включает схему зарядки аккумулятора, а затем возвращается к выполнению прерванной программы.
Внешнее прерывание. Работа МК происходит также, как и при внутреннем прерывании, но вызываться оно может любым устройством, подключенным к специальному входу МК.

6. Интерфейсы и модули для передачи данных. Мы подробно рассматривать их будем только в том случае, если они потребуются для собираемой нами (в будущем) конструкции. Более подробно о них можно прочитать в популярной литературе.
Последовательный периферийный интерфейс SPI
Имеется во всех моделях МК.
Мы его в 99,9 случаях из 100 применяем для программирования МК.
Кроме программирования МК интерфейс SPI позволяет:
– обмениваться данными между МК и внешними устройствами
– обмениваться данными нескольким МК между собой
Универсальный приемопередатчик
Имеют все модели МК, но разных типов:
– USART
– UART
Предназначены для обмена данными по последовательному каналу.
Последовательный двухпроводный интерфейс TWI Порты ввода/вывода микроконтроллера

Что нужно для того, чтобы стать профессиональным разработчиком программ для микроконтроллеров и выйти на такой уровень мастерства, который позволит с лёгкостью найти и устроиться на работу с высокой зарплатой (средняя зарплата программиста микроконтроллеров по России на начало 2015 года составляет
80 000 рублей).

Чтобы понимать то, о чём я буду говорить, желательно, чтобы вы хотя бы на начальном уровне знали электронику или хотя бы более-менее помнили школьный курс физики. Если этим вы похвастаться не можете, то тоже не страшно, так как я буду стараться объяснять всё максимально доступно. Ну а если какие-то вещи останутся для вас непонятными, то задавайте вопросы . Только прошу описывать вашу проблему как можно более подробно, чтобы не тратить своё и моё время на переписку с дополнительными уточнениями.

Для тех, у кого проблемы с просмотром видео, я коротко расскажу его содержание.

Итак, микропроцессор и микроконтроллер - это специальные микросхемы. Но чем они отличаются друг от друга?

Вопрос не такой простой, как хотелось бы. Скажу больше, я не уверен, что знаю правильный ответ))) Однако, опираясь на свои немалые знания и опыт, я могу попытаться на него ответить.

В далёкие времена вычислительные системы строились на множестве микросхем разных типов. Когда-то вообще не было микропроцессоров. Вычислительные системы сначала были механическими, потом ламповыми, потом транзисторными. Потом пришло время интегральных микросхем.

Мне довелось работать на первой советской автоматической телефонной станции (АТС) с программным управлением. Её процессор был собран на микросхемах 155-й серии (электронщики меня поймут). Эта АТС занимала целую комнату.

Но со временем элементная база становилась всё меньше и меньше по размеру. То, что раньше собирали из нескольких десятков микросхем, удалось впихнуть в одну микросхему. Так и получился микропроцессор.

Однако для создания полноценной вычислительной системы требовались и другие элементы: память, элементы ввода-вывода и т.п. В итоге микропроцессорная система состояла из нескольких микросхем, и управлял всей этой системой микропроцессор .

Однако техника не стояла на месте. Учёным и инженерам удалось сделать кристаллы микросхем ещё меньше. И кому-то пришла идея объединить все элементы микропроцессорной системы в одну микросхему. Так появился микроконтроллер .

Итак, современный микроконтроллер - это микросхема, которая включает в себя все элементы микропроцессорной системы, такие как процессор, порты ввода-вывода, оперативную память и т.п.

Таким образом, чтобы собрать какое-нибудь простейшее устройство, нужно всего лишь:

  • Разработать схему устройства
  • Выбрать микроконтроллер
  • Написать программу для микроконтроллера
  • Загрузить программу в микроконтроллер (“прошить” микроконтроллер)
  • Собрать устройство
  • Наслаждаться результатом

Сложно? Да, непросто. Но если вы из тех, кто опускает руки при первых же проблемах, то эта профессия не для вас. Профессиональный программист - это сильная личность, человек, для которого нет нерешаемых задач.

Применение микроконтроллеров

Сегодня микроконтроллеры применяются практически во всех электронных устройствах - от китайских гирлянд до систем управления атомными станциями. Разумеется, функциональность и надёжность микроконтроллеров в гирляндах и на АЭС отличаются.

Практически вся бытовая техника (за исключением, быть может, простых электрочайников и подобных устройств) управляется микроконтроллерами: стиральные машины, телевизоры, холодильники, мультиварки и т.п.

В современных автомобилях также используются микроконтроллеры в бортовых компьютерах.

В общем, трудно в современном мире найти сферу человеческой деятельности, где бы не применялись микроконтроллеры.

Какой из этого вывод?

Правильно. Если вы станете профессиональным программистом в области разработки устройств на микроконтроллерах и их программирования, то без работы вы не останетесь. А с учётом того, что профессия эта сложная, и не каждому охота с ней связываться, эта работа будет ещё и высокооплачиваемой, так как спрос на таких специалистов высок.

Но об этом мы ещё поговорим в следующих статьях. Ждите писем. А если вы ещё не подписаны, то

Рассмотрим внутреннюю архитектуру микроконтроллеров AVR, попробуем разобраться из каких блоков состоит кристалл микросхемы и за какие функции отвечает каждый блок, как они взаимодействуют между собою. Также будут приведены полезные сравнения и примеры, ценные заметки что помогут прояснить принципы работы микроконтроллера с внешними устройствами и периферией.

AVR микроконтроллер изнутри

Микроконтроллер изнутри - это компьютер со своим вычислительным устройством, постоянной и динамической памятью, портами ввода-вывода и разной периферией.

Рис. 1. Структура AVR микроконтроллера. Рисунок с сайта digikey.com

Внутри микроконтроллер содержит:

  • Быстродействующий процессор с RISC-архитектурой;
  • FLASH-память;
  • EEPROM-память;
  • Оперативную память RAM;
  • Порты ввода/вывода;
  • Периферийные и интерфейсные модули.

RISC (Reduced Instruction Set Computer) - архитектура с тщательно подобранным набором команд, которые как правило выполняются за один такт работы процессора. Современные AVR микроконтроллеры содержат около 130 команд, которые очень быстро выполняются и не требуют больших затрат как по внутри-процессорным ресурсам, так и по потребляемой мощности.

Структурная схема AVR микроконтроллера

Посмотрим на рисунок ниже и разберемся из каких блоков состоит микроконтроллер и как они связаны между собою:

Рис. 2. Структурная схема AVR микроконтроллера.

Рассмотрим кратко что изображено на блоках в схеме:

  • JTAG Interface (Joint Test Action Group Interface) - интерфейс внутрисхемной отладки (4 провода);
  • FLASH - перепрограммируемая память для сохранения программы;
  • Serial Peripheral Interface, SPI - последовательный периферийный интерфейс (3 провода);
  • EEPROM (Electrically Erasable Programmable Read-Only Memory) - перепрограммируемое ПЗУ, энергонезависимая память;
  • CPU (ЦПУ) - центральный процессор управления, сердце микроконтроллера, 8-битное микропроцессорное ядро;
  • ALU (АЛУ) - арифметико-логическое устройство, основа блока CPU;
  • RAM (Random Access Memory) - оперативная память процессора;
  • Program Counter - счетчик команд;
  • 32 General Purpose Registers - 32 регистра общего назначения;
  • Instruction Register - регистр команд, инструкций;
  • Instruction Decoder - декодер команд;
  • OCD (On-Chip Debugger) - блок внутренней отладки;
  • Analog Comparator - аналоговый компаратор, блок сравнения аналоговых сигналов;
  • A/D Converter (Analog/Digital converter) - аналогово-цифровой преобразователь;
  • LCD Interface (Liquid-Crystal Display Interface) - интерфейс для подключения жидко-кристаллического дисплея, индикатора;
  • USART (Universal Asynchronous Receiver-Transmitter), UART - универсальный асинхронный приемопередатчик;
  • TWI (Two-Wire serial Interface) - последовательный интерфейс с двухпроводным подключением;
  • Watchdog Timer - сторожевой или контрольный таймер;
  • I/O Ports - порты вода/вывода;
  • Interrupts - блок управления и реакции на прерывания;
  • Timers/Counters - модули таймеров и счетчиков.

Подробнее о внутренних блоках микроконтроллера

А теперь подробно рассмотрим все блоки микроконтроллера, разберемся что и для чего нужно, приведу простые примеры доступным языком.

JTAG Interface - важный интерфейс который позволяет производить внутреннюю отладку прямо в чипе используя блок внутренней отладки (OCD ), без использования эмуляторов. Можно сказать что JTAG - это интерфейс для "железной" отладки микроконтроллера. Через JTAG-адаптер микросхема напрямую подключается к программному комплексу для программирования и отладки.

Используя данный интерфейс можно в пошаговом режиме выполнять программу прямо в микроконтроллере, смотреть как изменяется содержимое регистров, как мигают индикаторы и светодиоды что подключены к микроконтроллеру после каждого шага и т.п. Для подключения к JTAG интерфейсу достаточно 4-х проводников: TDI(Test Data In), TDO(Test Data Out), TCK(Test Clock), TMS (Test Mode Select).

JTAG интерфейс доступен далеко не во всех микроконтроллерах AVR, как правило таким вкусным дополнением обладают чипы у которых 40 и более лапок, а объем памяти доступен в размере не менее 16КБ. Для серьезных задач - серьезные материалы и инструменты.)

FLASH - память программ, энергонезависимое ПЗУ(постоянное запоминающее устройство) что выполнено по технологии FLASH. Здесь хранится программа, которая будет исполняться блоком ALU микроконтроллера. Флешь-память чипа можно многократно перезаписывать, тем самым меняя или дополняя программный код для выполнения. Данный тип памяти может сохранять записанные в нее данные в течение 40 лет, а количество возможных циклов стирания/записи может достигать 10000.

В зависимости от модели микроконтроллера размер FLASH-памяти может достигать 256 KБ.

Serial Peripheral Interface, SPI - последовательный периферийный интерфейс (SPI) который зачастую применяется для обмена данными между несколькими микроконтроллерами со скоростью до нескольких MГц (нескольких миллионов тактов в секунду).

Для обмена данными по SPI интерфейсу между двумя устройствами достаточно 3-х проводников:

  1. MOSI (Master Output Slave Input) - Данные от ведущего к ведомому;
  2. MISO (Master Input Slave Output) - Данные от ведомого к ведущему;
  3. CLK (Clock) — тактовый сигнал.

Устройства с SPI-интерфейсом делятся на два типа: ведущий(Master) и ведомый(Slave). Если к интерфейсу подключено несколько устройств то для обмена данными между ними нужны дополнительные линии связи(проводники) чтобы мастеру можно было выбрать ведомое устройство и сделать запрос к нему.

Также SPI интерфейс используется для внутрисхемного SPI программирования, по этому интерфейсу к микроконтроллеру подключается программатор.

EEPROM - энергонезависимая память данных в которой данные будут храниться даже при отключении питания микроконтроллера. В данной памяти можно хранить настройки выполнения программы, собранные данные для статистики работы устройства и другую полезную информацию. К примеру, собрав маленькую метеостанцию на микроконтроллере, в EEPROM на каждый день можно сохранять данные о температуре воздуха, давлении, силе ветра, а потом в любой момент считать эти собранные данные и провести статистические исследования.

Для EEPROM выделено отдельное адресное пространство которое отличается от адресного пространства RAM и FLASH. Память EEPROM микроконтроллера - очень ценный ресурс, поскольку ее как правило очень мало - от 0,5 до нескольких килобайт на чип. Количество перезаписей для данного типа памяти составляет порядка 100000 что в 10 раз больше чем ресурс FLASH памяти.

ALU - Арифметико-логическое устройство, которое синхронно с тактовым сигналом и опираясь на состояние счетчика команд (Program Counter ) выбирает из памяти программ (FLASH ) очередную команду и производит ее выполнение.

Тактовый сигнал для микроконтроллера вырабатывается тактовым генератором, и может быть подан из нескольких доступных источников на выбор:

  • внутренний RC-генератор, который можно калибровать на нужную частоту;
  • керамический или кварцевый резонатор с конденсаторами (не у всех моделей);
  • внешний тактовый сигнал.

Установка источника тактовых импульсов производится при помощи FUSE-битов.

FUSES (с англ.: плавление, пробка, предохранитель) - специальные 4 байта(4*8=32 бит) данных, которые настраивают некоторые глобальные параметры микроконтроллера в процессе прошивки. После прошивки данные биты нельзя изменить через внутреннюю программу что записана в МК.

Данной конфигурацией бит мы указываем микроконтроллеру вот что:

  • какой использовать задающий генератор (внешний или внутренний);
  • делить частоту генератора на коэффициент или нет;
  • использовать ножку сброса (RESET) для сброса или же как дополнительный пин ввода-вывода;
  • количество памяти для загрузчика;
  • другие настройки зависимо от используемого микроконтроллера.

CPU - это мозг микроконтроллера, который содержит в себе АЛУ, регистры и оперативную память.

К ALU подключен блок из 32-х регистров общего назначения (32 General Purpose Registers - регистровая память), каждый из которых представляет собою 1 байт памяти (8 бит). Адресное пространство регистров общего назначения размещено в начале оперативной памяти (RAM) но не является ее частью. С данными что помещаются в регистры можно производить разнообразные арифметические, логические и битовые операции. Выполнение подобных операций в оперативной памяти не доступно. Для работы с данными из RAM нужно их записать в регистры, произвести в регистрах нужные операции, а потом записать результирующие данные из регистров в память или в другие регистры для выполнения каких-то действий.

RAM - оперативная память. В нее можно записывать данные из регистров, считывать данные в регистры, все операции с данными и расчеты производятся в регистрах. Для разных семейств AVR чипов размер оперативной памяти ограничен:

  • ATxmega - до 32 KБ;
  • ATmega - 16 Кб;
  • ATtiny - 1 Кб.

Analog Comparator - данный блок сравнивает между собою два уровня сигнала и запоминает результат сравнения в определенном регистре, после чего сданный результат можно проанализировать и выполнить необходимые действия. Для примера: можно использовать этот блок как АЦП(Аналогово-Цифровой Преобразователь) и измерять напряжение батареи питания, в случае если если напряжение батареи достигло низкого уровня - произвести некоторые действия, помигать красным светодиодом и т.п. Также данный модуль можно применять для измерения длительности аналоговых сигналов, считывания установленных режимов работы устройства при помощи потенциометра и т.п.

A/D Converter - данный блок преобразовывает аналоговое значение напряжения в цифровое значение, с которым можно работать в программе и на основе которого можно выполнять определенные действия. Как правило диапазон напряжений что подаются на вход АЦП в AVR микроконтроллере находится в пределах 0-5,5 Вольт. Для данного блока очень важно чтобы микроконтроллер питался от стабильного и качественного источника питания. Во многих AVR микроконтроллерах есть специальный отдельный вывод для подачи стабильного питания на схему АЦП.

LCD Interface - интерфейс для подключения жидкокристаллического индикатора или дисплея. Применятся для отображения информации, состояния устройства и его узлов.

USART - последовательный асинхронный интерфейс для обмена данными с другими устройствами. Есть поддержка протокола RS-232, благодаря чему микроконтроллер можно соединить для обмена данными с компьютером.

Для подобной связи МК с COM-портом компьютера нужен конвертер логических уровней напряжения (+12В для COM - в +5В для микроконтроллера), или же просто RS232-TTL. Для подобных целей используют микросхемы MAX232 и им подобные.

Для подключения микроконтроллера к компьютеру через USB используя UART-интерфейс можно использовать специализированную микросхему FT232RL. Таким образом на новых компьютерах и ноутбуках можно не имея физического COM-порта привязать микроконтроллер используя USB-порт через USART интерфейс.

TWI - интерфейс для обмена данными по двухпроводной шине. К такой шине данных можно подключить до 128 различных устройств, используя две линии данных: тактовый сигнал (SCL) и сигнал данных (SDA). Интерфейс TWI является аналогом базовой версии интерфейса I2C.

В отличие от SPI интерфейса (один мастер и один/несколько ведомых) интерфейс TWI - двунаправленный, сто позволяет организовать между несколькими микроконтроллерами небольшую внутреннюю сеть.

Watchdog Timer представляет собою систему контроля зависания устройства с последующим его перезапуском. Это как автоматическая кнопка RESET для старенького компьютера с глючной ОС.))

I/O Ports , GPIO - это набор блоков портов ввода/вывода к пинам которых можно подключить разнообразные датчики, исполняющие устройства и цепи. Количество пинов вход/выход, что идут от портов в микроконтроллере, может быть от 3 до 86.

Выходные драйверы в портах AVR микроконтроллера позволяют напрямую подключать нагрузку з потребляемым током 20 мА(максимум 40 мА) при напряжении питания 5В. Общий нагрузочный ток для одного порта не должен превышать значение в 80 мА (например на 4 пина для одного из портов повесить по светодиоду с током 15-20 мА).

Interrupts - это блок который отвечает за реакцию и запуск на выполнение определенных функций при поступлении сигнала на определенные входы микроконтроллера или же по какому-то внутреннему событию (например тиканью таймера). Под каждое прерывание разрабатывается и записывается в память отдельная подпрограмма.

Почему этот блок называется блоком прерываний? - потому что при возникновении определенного для прерывания события выполнение основной программы прерывается и происходит приоритетное выполнение подпрограммы что написана для текущего прерывания. По завершению выполнения подпрограммы происходит возвращение к выполнению основной программы с того момента где она была прервана.

Timers/Counters - набор таймеров и счетчиков. Микроконтроллер, как правило, содержит в себе от одного до четырех таймеров и счетчиков. Они могут применяться для подсчета количества внешних событий, формирования сигналов определенной длительности, вырабатывать запросы на прерывания и т.п. Разрядность таймеров и счетчиков составляет - 8 и 16 бит (смотреть в даташите для чипа).

Заключение

Вот в принципе и все что изначально полезно знать о структуре микроконтроллера AVR. Дальше, в процессе работы и программирования, у вас будет возможность на практике изучить даташиты для разных моделей AVR чипов, узнать более детально принципы работы каждого из структурных кубиков МК и изучить как они работают, поиграться с отладкой и т.п.

В следующей статье попробуем разобраться с маркировкой микроконтроллеров, поразмышляем о наиболее доступных и подходящих для начального изучения чипах.

Цель курса – познакомиться с микропроцессорной техникой, научиться писать программы для микроконтроллеров и отлаживать их на реальном оборудовании. В курсе описано устройство микроконтроллера, показано, как он взаимодействует с окружающим миром. Курс предназначен для учащихся школ, нетехнических колледжей, техникумов и ВУЗов.

Для освоения курса не требуется каких-либо специализированных знаний в электротехнике и программировании, не нужно ничего паять (хотя в будущем было бы неплохо научиться;), не нужно покупать дорогостоящих отладочных плат. Для начала работы нам понадобится персональный компьютер (ПК) с выходом в интернет. Вся практическая часть курса выполняется в лаборатории с удаленным доступом, которая представлена макетной платой с микроконтроллером и направленной на нее вебкамерой. Любой желающий может, сидя у себя дома, запрограммировать микроконтроллер и через вебкамеру понаблюдать за его работой.

Программы мы будем писать на языке С в среде программирования Keil-C компании ARM. Сразу оговоримся, среда разработки Keil-C платная, но для выполнения всех наших работ достаточно демонстрационной версии этого продукта, demo версию можно скачать либо с официального сайта компании ARM www.keil.com , либо у нас в разделе . В своих примерах я буду использовать версию v812.

Что же такое микроконтроллер? Микроконтроллер можно сравнить с персональным компьютером, он также имеет свой процессор, оперативную память, память для долгосрочного хранения информации, порты ввода-вывода и многие другие периферийные устройства, например, аналого-цифровые (АЦП) и цифроаналоговые преобразователи (ЦАП). Только, в отличие от персонального компьютера, все эти компоненты объединены в одной микросхеме, поэтому микроконтроллер можно назвать "компьютером в одной микросхеме" . Конечно, быстродействие такого компьютера не сравниться с быстродействием ПК, но для большинства задач мониторинга и управления его достаточно.

Рисунок 1 - Внешний вид микрокнтроллера ADuC842 в различных корпусах

Микроконтроллер может задавать режим работы стиральной машины, контролировать температуру в бассейне, выводить на жидкокристаллический дисплей текст или изображение, управлять мощностью освещения, измерять напряжение, ток или любую другую физическую величину. Микроконтроллер можно встретить в сотовом телефоне, телевизоре, микроволновой печи, фотоаппарате, автомобиле, клавиатуре, наручных часах, то есть в любых устройствах, где так или иначе приходится чем-либо управлять, что-то измерять или обрабатывать информацию.

Также как и для персонального компьютера, для работы микроконтроллера требуется программа, но если в ПК, как правило, программа рассчитана на взаимодействие с операционной системой, то в микропроцессоре (тоже, как правило, но совсем не обязательно) такой операционной системы нет. В персональном компьютере операционная система организует доступ пользовательской программы ко всем внутренним и внешним устройствам компьютера через драйвер. Когда мы пишем программу для микроконтроллера, то никаких драйверов устройств нет, и нам необходимо самостоятельно организовывать программный доступ к каждому устройству.

Для обмена информацией с внешним миром в контроллере предусмотрены порты ввода и вывода информации. Часто порт ввода объединяется с портом вывода, и образуют порт ввода-вывода информации.

С внешним миром микроконтроллер обменивается информацией в цифровом виде. Основой логики работы микропроцессора служит двоичная система счисления, состоящая всего из двух цифр – единицы "1" и нуля "0". Эти две цифры двоичной системы позволяют записывать практически любые числа. Для электрических сигналов, несущих эту цифровую информацию, двоичная система счисления соответствует двум состояниям, или двум "логическим" уровням: высокому и низкому. Как правило, напряжение высокого логического уровня близко к напряжению питания микросхемы, например, 5 В или 3 В. Напряжение низкого логического уровня – логического ноля "0" - может составлять несколько десятых вольта, например, 0,3 В, и в идеальном случае равняется 0 В. С помощью загруженной в него программы микроконтроллер может установить на любой ножке порта вывода требуемый уровень напряжения. Также микроконтроллер может программно определять состояние сигнала на своих ножках, высокое ли напряжение на ней или низкое (ноль или единица).

Получать информацию микроконтроллер может из подключаемых к его портам устройств, таких как: кнопки, клавиатуры, различные датчики, цифровые микросхемы и других микроконтроллеры, и даже ПК. Для вывода информации к портам контроллера можно подключать светодиоды, жидкокристаллические индикаторы, семисегментные индикаторы и многое другое.

Все порты ввода-вывода можно разделить на две группы: это параллельные порты и последовательные . При параллельном способе передачи информации каждый бит передаваемого слова имеет отдельный провод, таким образом, при передаче данных байтами нам понадобиться шлейф из восьми проводов. При таком способе передачи у микропроцессора для функции ввода-вывода должно быть зарезервировано восемь ножек. При последовательном способе передачи данных используется всего лишь один информационный проводник, на нем последовательно, друг за другом, устанавливаются биты передаваемого слова. На другой стороне приемник также последовательно считывает эти биты. То есть для реализации последовательной передачи данных может быть использована всего одна ножка контроллера.


Рисунок 2 - Структурная схема микроконтроллера

Любой микроконтроллер в своем составе должен иметь микропроцессор. Микропроцессор - это "мозг" микроконтроллера, помимо вычислений он обеспечивает взаимодействие всех периферийных устройств микроконтроллера. Когда мы пишем программу, мы как бы указываем микропроцессору, какие инструкции и в какой последовательности ему следует выполнять.

Также как и в персональном компьютере, в микропроцессоре есть память. Структурно память состоит из пронумерованных ячеек, номер ячейки принято называть адресом, а совокупность всех возможных адресов памяти называют адресным пространством. Процессору в произвольный момент времени доступна любая ячейка.

Всю память можно разделить две большие группы: это ПЗУ - постоянно запоминающее устройство, и ОЗУ - оперативно запоминающее устройство, или просто - оперативная память. В персональном компьютере роль ПЗУ выполняют жесткие диски, оптические диски, карты памяти и флешки. Особенность этого типа памяти заключается в том, что после отключения питания устройства записанная информация сохраняется на носителе, и после возобновления подачи питания снова может быть считана. В оперативной же памяти информация сохраняется только пока подано питание. Но быстродействие ОЗУ может превосходить быстродействие ПЗУ в десятки и даже сотни раз. Поэтому удобно исполняемую программу держать в ПЗУ, а все переменные, к которым требуется быстрый доступ - в ОЗУ. Если в ПК объем памяти измеряется в ГБ (приставка Гига – 10 9), то в микроконтроллерах все гораздо скромнее. Так, в микроконтроллере ADuC842, который мы будем использовать в практической части урока, имеется всего 62 кБ (килобайта) ПЗУ и 256 байт ОЗУ.

Еще одна особенность микроконтроллеров заключается в том, что бо льшая часть из них выполнена по так называемой Гарвардской архитектуре , а это значит, что для хранения программ и данных используется две различные памяти: память программ и память данных. В памяти программ хранится непосредственно исполняемый код, который определяет алгоритм действия системы. Этот код никоим образом не может быть изменен исполняемой программой. Загружая исполнительный код в память микроконтроллера, программист определяет алгоритм функционирования микроконтроллерной системы. Часто процесс загрузки программы в память называют "прошивкой" контроллера.

После загрузки программы в память мы перезапускаем микроконтроллер. После перезагрузки микропроцессор обращается в самую первую ячейку памяти программ за командой. Адрес самой первой ячейки - 0. Затем считанная команда выполняется, и процессор начинает считывать следующую по порядку команду. Таким образом, команды выполняются последовательно, одна после завершения другой. Но существуют команды, способные изменить последовательность выполнения команд в зависимости от каких-либо условий, такие команды называются командами условного перехода. С помощью таких команд реализуются разветвленные алгоритмы работы.


Рисунок 3 - Порядок выполнения команд

В данном курсе мы научимся создавать собственные "прошивки" для микроконтроллеров. Каждый урок будет состоять из двух частей. Первая часть - это теория, где я расскажу о способах подключения различных устройств к микроконтроллеру и особенностях функционирования встроенной периферии. Во второй части покажу, как программно организовать работу описанной в первой части системы. Кроме того, в конце каждого урока полагается домашнее задание, где будет предложено решить прикладную задачу: написать, отладить и испытать на реальном оборудовании программу.

В наши дни микроконтроллеры можно встретить практически в каждом экземпляре бытовой техники и электроники. Например, если в микроволновой печи есть светодиодный или ЖК-экран и клавиатура, то она обязательно оборудована специальной управляющей микросхемой.

Многообразие применений

Все современные автомобили содержат по крайней мере один микроконтроллер и могут быть оборудованными несколькими для двигателя, антиблокировочной системы, круиз-контроля и т. д. Любое устройство с ПДУ почти наверняка имеет управление микроконтроллером. В эту категорию попадают телевизоры, плееры и высококачественные стереосистемы. Цифровые компактные и зеркальные камеры, сотовые телефоны, видеокамеры, автоответчики, лазерные принтеры, стационарные телефоны с возможностью идентификации вызывающего абонента и памятью на 20 номеров, многофункциональные холодильники, посудомоечные и стиральные В принципе, любая бытовая техника или устройство, которое взаимодействует с пользователем, имеет встроенный микроконтроллер.

Что это такое?

Микроконтроллер - это компьютер. Все компьютеры, независимо от того, являются ли они персональными или большими мэйнфреймами, обладают некоторыми общими чертами. У них есть который выполняет программы, загружая команды из какого-либо хранилища данных. На ПК, например, это жесткий диск. Компьютер также оборудован оперативным запоминающим устройством (ОЗУ). Для коммуникации с внешним миром должны предусматриваться специальные средства. На ПК клавиатура и мышь являются устройствами ввода информации, а монитор и принтер используются для ее вывода. Жесткий диск объединяет в себе обе эти функциональные возможности, поскольку работает как с входными, так и выходными данными.

ЦПУ

Тип используемого в микроконтроллере процессора зависит от конкретного приложения. Доступны варианты от простых 4-, 8- или 16-разрядных до более сложных 32- или 64-битных. Что касается памяти, то могут использоваться ОЗУ, флэш-память, EPROM или EEPROM. Как правило, микроконтроллеры рассчитаны на использование без дополнительных вычислительных компонентов, поскольку они спроектированы с достаточным объемом встроенной памяти, а также имеют контакты для общих операций ввода-вывода, чтобы напрямую взаимодействовать с датчиками и другими компонентами.

Архитектура ЦПУ может быть как гарвардской, так и фон-неймановской, предлагая различные методы обмена информацией между процессором и памятью. В первом случае шины данных и команд разделены, что позволяет осуществлять одновременную их передачу. В для этого используется общая.

Программирование

Процессоры микроконтроллеров могут базироваться на расширенном (CISC) или сокращенном наборе команд (RISC). CISC обычно включает около 80 инструкций (RISC - около 30), а также большее число режимов адресации - 12-24 по сравнению с 3-5 у RISC. Хотя расширенный набор команд проще реализовать и он эффективнее использует память, его производительность ниже из-за большего количества тактовых циклов, необходимых для их выполнения. RISC-процессоры уделяют больше внимания программному обеспечению и более производительны.

Первоначально языком микроконтроллеров был ассемблер. Сегодня популярным вариантом является язык C.

При наличии соответствующего кабеля, программного обеспечения и ПК запрограммировать микроконтроллер своими руками несложно. Необходимо подключить контроллер кабелем к компьютера, запустить приложение и загрузить набор команд.

Определяющие характеристики

Как отличить компьютер от микроконтроллера? Если первый представляет собой устройство общего назначения, которое может запускать тысячи различных программ, то второй является специализированным, ориентированным на одно приложение. Существует и ряд других характеристик, которые позволяют отличить микроконтроллеры. Для начинающих пользователей это проблемой не будет - достаточно установить наличие у чипа большинства нижеперечисленных качеств, чтобы можно было смело отнести его к данной категории.

  • Микроконтроллеры являются элементами какого-либо другого устройства (часто бытовой техники) для управления его функциями или работой. Еще их называют встроенными контроллерами.
  • Устройство предназначено для выполнения одной задачи и запуска одной конкретной программы, хранящейся в ПЗУ, которая обычно не изменяется.

  • Микроконтроллеры - это маломощные чипы. Их мощность при питании от батареи составляет около 50 мВт. Настольный компьютер почти всегда подключен к розетке и потребляет 50 Вт и больше.
  • Микроконтроллер отличается наличием специального блока ввода и часто (но не всегда) небольшого светодиода или ЖК-дисплея для вывода. Принимает входные данные от устройства, которым он управляет, посылая сигналы различным его компонентам. Например, микроконтроллер телевизора получает сигналы с ПДУ и отображает вывод на экране телевизора. Он управляет селектором каналов, динамиками и некоторыми настройками изображения, такими как контраст и яркость. Контроллер автомобильного двигателя принимает входные сигналы от датчиков кислорода и детонации, регулирует создание топливной смеси и синхронизирует работу свечей зажигания. В микроволновой печи он принимает ввод с клавиатуры, отображает вывод на ЖК-дисплее и управляет реле включения и отключения СВЧ-генератора.
  • Микроконтроллеры - это зачастую небольшие и недорогие устройства. Компоненты выбираются таким образом, чтобы минимизировать размеры и максимально удешевить производство.
  • Часто, но не всегда, работа микроконтроллера осуществляется в неблагоприятных условиях. Например, устройство управления двигателем автомобиля должно работать в экстремальных температурах, при которых обычный компьютер вообще не может функционировать. На севере микроконтроллер автомобиля должен функционировать при температуре -34 °C, а на юге - при 49 °C. В моторном отсеке температура может достигать 65-80 °C. С другой стороны, микроконтроллер, встроенный в проигрыватель Blu-ray, вообще не должен быть особо прочным.

Требования к ЦПУ

Процессоры, используемые в микроконтроллерах, могут сильно различаться. Например, в сотовых телефонах применялся 8-разрядный микропроцессор Z-80, разработанный в 1970-х годах и первоначально использовавшийся в домашних компьютерах. GPS-навигатор Garmin оборудовался маломощной версией Intel 80386, которую также первоначально устанавливали в настольных ПК.

Большая часть бытовой техники, такой как микроволновые печи, нетребовательна к процессорам, но их цена является важным фактором. В этих случаях производители обращаются к специализированным микроконтроллерам, разработанным из недорогих, небольших и маломощных ЦПУ. Motorola 6811 и Intel 8051 являются хорошими примерами таких чипов. Также выпускается серия популярных компании Microchip. По сегодняшним меркам эти процессоры невероятно минималистичны, но они чрезвычайно дешевы и часто могут полностью удовлетворить потребности конструктора.

Экономичность

Типичный микроконтроллер - это чип с 1000 байтов ПЗУ, 20-ю байтами ОЗУ и 8-ю контактами ввода-вывода. При выпуске большими партиями их стоимость невысока. Конечно, запустить Microsoft Word на таком чипе невозможно - для этого потребуется не менее 30 МБ ОЗУ и процессор, выполняющий миллионы операций в секунду. Но для управления микроволновой печью этого и не нужно. Микроконтроллер выполняет одну конкретную задачу, а низкая стоимость и энергопотребление являются его главными преимуществами.

Как работает?

Несмотря на большое разнообразие микроконтроллеров и еще большее количество программ для них, научившись обращаться с одним из них, можно познакомиться со всеми. Типичный сценарий работы выглядит следующим образом:

  • При отключенном питании устройство никак себя не проявляет.
  • Подключение микроконтроллера к источнику энергии запускает блок логики системы управления, который отключает все другие схемы, кроме кварцевого кристалла.
  • Когда напряжение достигает своего максимума, частота генератора стабилизируется. Регистры заполняются битами, отражающими состояние всех схем микроконтроллера. Все контакты конфигурируются как входы. Электроника начинает работать согласно ритмической последовательности тактовых импульсов.
  • Счетчик команд обнуляется. Инструкция по этому адресу отправляется в декодер команд, который ее распознает, после чего она немедленно выполняется.
  • Значение счетчика команд увеличивается на 1, и весь процесс повторяется со скоростью миллион операций в секунду.
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png