- 49.08 Кб

Первой волной компьютерной революции принято считать появление мэйнфреймов, предоставивших предприятиям доступ к огромным информационным ресурсам. На этом этапе весомую роль сыграла компания IBM. Ее унаследованные системы и сегодня все еще широко применяются различными организациями по всему миру.

Вторая волна связана с распространением персональных компьютеров в начале 80-х годов. Благодаря ПК, информационные технологии стали доступными для конечных пользователей, что дает основание называть данный этап "демократизацией вычислений". Важнейшая роль здесь принадлежит корпорации Microsoft, разработавшей самые популярные ОС для настольных систем.

Инвестиции в инфраструктуру и сервисы Интернет вызвали бурный рост отрасли информационных технологий в конце 90-х годов XX века. Сегодня наблюдается бурное развитие локальных и глобальных сетей. Сетевые возможности становятся обязательными атрибутами ОС (операционной системы) для ПК, а сетевые серверные ОС - ареной конкурентной борьбы ведущих компаний. Новый этап должен привести к качественному изменению всего характера вычислений.

Мы стоим на пороге третьего этапа компьютерной революции, которая приведет к реализации возможности непрерывного обмена информацией через глобальные сети. В этом случае накопленные знания станут доступными в электронной форме и будут передаваться по сетям, универсальный доступ к глобальной сети фундаментально изменит современные методы работы, образования, управления, способы проведения досуга и характер развлечений.

Переходу к новому этапу способствует и сама технология. По мнению специалистов, в течение ближайшего десятилетия базовые компьютерные технологии не столкнутся с существенными физическими ограничениями, что позволит наращивать вычислительную мощность микропроцессоров и емкость устройств дисковой памяти теми же темпами, что и сегодня. В то же время для микропроцессоров, памяти, программного обеспечения определяющей является технология коммуникаций. По мере наращивания мощности клиентов и серверов необходимость в быстрой передаче больших объемов данных становится все более острой, поэтому следующим этапом должны стать наращивание мощности сетевых технологий. Эволюция средств связи приводит к применению каналов со все более высокой пропускной способностью, что даст возможность передавать по ним все типы данных и обеспечить такими средствами каждый дом. Что касается программного обеспечения, то оно превратится в среду интеллектуальной поддержки, направляющую действия пользователей.

Для персональных компьютеров различных видов современные сети предлагают такие услуги, которые еще вчера трудно было представить, включая новые возможности телевидения и развитые системы защиты. Электроника все шире будет использоваться в быту, наделяя "интеллектом" не только теле-, радио- и видеоаппаратуру, но и самые обычные предметы. Развиваемые технологии позволят подключить данные устройства к сети, используя для этого всю существующую инфраструктуру, включая кабельное телевидение и обычную электросеть.

Глобальная коммуникационная сеть, как Internet неуклонно расширяется, приобретая все более важное значение и новые функции. Она все чаще применяется не только для поиска информации и коммуникаций, но и для обучения, электронной коммерции и в других областях, знаменуя начало формирования глобального сетевого сообщества.

Развитие информационных технологий в значительной степени определяет процессы интеграции систем и создания стандартов. Это может в существенной мере отодвинуть сроки воплощения в жизнь тех преимуществ, которые предоставляют новейшие технологии. Например, выполнение программы создания и совершенствования компьютеров пятого поколения, финансируемой японскими фирмами, сдерживается тем, что новая архитектура программного обеспечения пока не сочетается с существующими центрами искусственного интеллекта, новые протоколы не могут быть использованы в старых системах связи, а новые машинные языки не подходят для старых систем и т.д.

Еще одной тенденцией развития информационных технологий является глобализация информационного бизнеса. Чисто теоретически любой человек (или фирма) является сегодня потребителем информации. Поэтому возможности информационного рынка по- прежнему являются беспредельными, хотя и существует довольно жесткая конкуренция между основными производителями.

Таким образом, главными, определяющими стимулами развития информационной технологии, являются социально-экономические потребности общества. Экономические отношения накладывают свой отпечаток на процесс развития техники и технологии, либо давая ему простор, либо сдерживая его в определенных границах.

Техника и технология в своем развитии имеют эволюционные и революционные стадии и периоды. Вначале обычно происходит медленное постепенное усовершенствование технических средств и технологии, накопление этих усовершенствований является эволюцией.

Современные тенденции развития средств вычислительной техники

По прогнозам аналитиков, к 2012 году число транзисторов в микропроцессоре достигнет 1 млрд., тактовая частота возрастет до 10 ГГц, а производительность достигнет 100 млрд.оп/с.

Рассмотрим основные направления развитие микропроцессоров.

1. Повышение тактовой частоты.

Для повышения тактовой частоты при выбранных материалах используются: более совершенный технологический процесс с меньшими проектными нормами; увеличение числа слоев металлизации; более совершенная схемотехника меньшей каскадности и с более совершенными транзисторами, а также более плотная компоновка функциональных блоков кристалла.

Так, все производители микропроцессоров перешли на технологию КМОП, хотя Intel, например, использовала БиКМОП для первых представителей семейства Pentium. Известно, что биполярные схемы и КМОП на высоких частотах имеют примерно одинаковые показатели тепловыделения, но КМОП-схемы более технологичны, что и определило их преобладание в микропроцессорах.

Уменьшение размеров транзисторов, сопровождаемое снижением напряжения питания с 5 В до 2,5-3 В и ниже, увеличивает быстродействие и уменьшает выделяемую тепловую энергию. Все производители микропроцессоров перешли с проектных норм 0,35-0,25 мкм на 0,18 мкм и 0,12 мкм и стремятся использовать уникальную 0,07 мкм технологию.

Год производства


При минимальном размере деталей внутренней структуры интегральных схем 0,1-0,2 мкм достигается оптимум, ниже которого все характеристики транзистора быстро ухудшаются. Практически все свойства твердого тела, включая его электропроводность, резко изменяются и "сопротивляются" дальнейшей миниатюризации, возрастание сопротивления связей происходит экспоненциально. Потери даже на кратчайших линиях внутренних соединений такого размера "съедают" до 90% сигнала по уровню и мощности.

При этом начинают проявляться эффекты квантовой связи, в результате чего твердотельное устройство становится системой, действие которой основано на коллективных электронных процессах. Проектная норма 0,05-0,1 мкм (50-100 нм) - это нижний предел твердотельной микроэлектроники, основанной на классических принципах синтеза схем.

Уменьшение длины межсоединений актуально для повышения тактовой частоты работы, так как существенную долю длительности такта занимает время прохождения сигналов по проводникам внутри кристалла. Например, в Alpha 21264 предприняты специальные меры по кластеризации обработки, призванные локализовать взаимодействующие элементы микропроцессора.

Проблема уменьшения длины межсоединений на кристалле при использовании традиционных технологий решается путем увеличения числа слоев металлизации. Так, Cyrix при сохранении 0,6 мкм КМОП технологии за счет увеличения с 3 до 5 слоев металлизации сократила размер кристалла на 40% и уменьшила выделяемую мощность, исключив существовавший ранее перегрев кристаллов.

Одним из шагов в направлении уменьшения числа слоев металлизации и уменьшения длины межсоединений стала технология, использующая медные проводники для межсоединений внутри кристалла, разработанная фирмой IBM и используемая в настоящее время и другими фирмами-изготовителями СБИС.

Впервые рубеж тактовой частоты в 500 МГц перешагнули микропроцессоры фирмы DEC, которая уже в конце 1996 г. поставляла Alpha 21164 с тактовой частотой 500 МГц, в 1997 г. - Alpha 21264 с тактовой частотой 600 МГц, а в 1998 г. - Alpha 21264 с тактовой частотой 750 МГц и выше. В настоящее время ряд фирм выпускает процессоры для персональных компьютеров с тактовой частотой свыше 4 ГГц.

Увеличение объема и пропускной способности подсистемы памяти.

Возможные решения по увеличению пропускной способности подсистемы памяти включают создание кэш-памяти одного или нескольких уровней, а также увеличение пропускной способности интерфейсов между процессором и кэш-памятью и конфликтующей с этим увеличением пропускной способности между процессором и основной памятью. Совершенствование интерфейсов реализуется как увеличением пропускной способности шин (путем увеличения частоты работы шины и/или ее ширины), так и введением дополнительных шин, расшивающих конфликты между процессором, кэш-памятью и основной памятью. В последнем случае одна шина работает на частоте процессора с кэш-памятью, а вторая - на частоте работы основной памяти. При этом частоты работы второй шины, например, равны 66, 66, 166 МГц для микропроцессоров Pentium Pro-200, Power PC 604E-225, Alpha 21164-500, работающих на тактовых частотах 300, 225, 500 МГц, соответственно. При ширине шин 64, 64, 128 разрядов это обеспечивает пропускную способность интерфейса с основной памятью 512, 512, 2560 Мбайт/с, соответственно.

Общая тенденция увеличения размеров кэш-памяти реализуется по-разному:

внешние кэш-памяти данных и команд с двухтактовым временем доступа объемом от 256 Кбайт до 2 Мбайт со временем доступа 2 такта в HP PA-8000;

отдельный кристалл кэш-памяти второго уровня, размещенный в одном корпусе в Pentium Pro;

размещение отдельных кэш-памяти команд и кэш-памяти данных первого уровня объемом по 8 Кбайт и общей для команд и данных кэш-памяти второго уровня объемом 96 Кбайт в Alpha 21164.

Наиболее используемое решение состоит в размещении на кристалле отдельных кэш-памятей первого уровня для данных и команд с возможным созданием внекристальной кэш-памяти второго уровня. Например, в Pentium II использованы внутрикристальные кэш-памяти первого уровня для команд и данных по 16 Кбайт каждая, работающие на тактовой частоте процессора, и внекристальный кэш второго уровня, работающий на половинной тактовой частоте.

Увеличение количества параллельно работающих исполнительных устройств.

Каждое семейство микропроцессоров демонстрирует в следующем поколении увеличение числа функциональных исполнительных устройств и улучшение их характеристик, как временных (сокращение числа ступеней конвейера и уменьшение длительности каждой ступени), так и функциональных (введение ММХ-расширений системы команд и т.д.).

В настоящее время процессоры могут выполнять до 6 операций за такт. Однако число операций с плавающей точкой в такте ограничено двумя для R10000 и Alpha 21164, а 4 операции за такт делает HP PA-8500.

Для того чтобы загрузить функциональные исполнительные устройства, используются переименование регистров и предсказание переходов, устраняющие зависимости между командами по данным и управлению, буферы динамической переадресации.

Широко используются архитектуры с длинным командным словом - VLIW. Так, архитектура IA-64, развиваемая Intel и HP, использует объединение нескольких инструкций в одной команде (EPIC). Это позволяет упростить процессор и ускорить выполнение команд. Процессоры с архитектурой IA-64 могут адресоваться к 4 Гбайтам памяти и работать с 64-разрядными данными. Архитектура IA-64 используется в микропроцессоре Merced, обеспечивая производительность до 6 Гфлоп при операциях с одинарной точностью и до 3 Гфлоп - с повышенной точностью на частоте 1ГГц.

Системы на одном кристалле и новые технологии.

В настоящее время получили широкое развитие системы, выполненные на одном кристалле - SOC (System On Chip). Сфера применения SOC - от игровых приставок до телекоммуникаций. Такие кристаллы требуют применения новейших технологий.

Основной технологический прорыв в области SOC удалось сделать корпорации IBM, которая в 1999 году смогла реализовать сравнительно недорогой процесс объединения на одном кристалле логической части микропроцессора и оперативной памяти. В новой технологии, в частности, используется так называемая конструкция памяти с врезанными ячейками (trench cell). В этом случае конденсатор, хранящий заряд, помещается в некое углубление в кремниевом кристалле. Это позволяет разместить на нем свыше 24 тыс. элементов, что почти в 8 раз больше, чем на обычном микропроцессоре, и в 2-4 раза больше, чем в микросхемах памяти для ПК. Следует отметить, что хотя кристаллы, объединяющие логические схемы и память на одном кристалле, выпускались и ранее, например, такими фирмами, как Toshiba, Siemens AG и Mitsubishi, подход, предложенный IBM, выгодно отличается по стоимости. Причем ее снижение никоим образом не сказывается на производительности.

Описание работы

На протяжении всей истории человечество овладело сначала веществом, затем энергией и, наконец, информацией. На заре цивилизации человеку хватало элементарных знаний и первобытных навыков, но постепенно объем информации увеличивался, и люди почувствовали недостаток индивидуальных знаний. Потребовалось научиться обобщать знания и опыт, которые способствовали правильной обработке информации и принятию необходимых решений, иными словами, необходимо было научиться целенаправленно работать с информацией и использовать для ее получения, обработки и передачи

На протяжении недавней истории ЭВМ, то есть примерно с середины 60-х годов, когда полупроводники уже полностью вытеснили электронные лампы из элементной базы вычислительных машин, в развитии этой области техники произошло несколько драматических поворотов. Все они явились следствием, с одной стороны, бурного развития технологии микропроцессоров, с другой - интенсивного прогресса программного обеспечения компьютеров. Тот и другой процессы развивались параллельно, подстегивая друг друга, в какой-то мере конкурируя. Новые технические возможности, появлявшиеся с созданием новых элементов и устройств, позволили разработать более совершенные (и функционально и по производительности) программы; это, в свою очередь, порождало потребность в новых, более совершенных компонентах и т. д.

В 60-е годы, в эпоху машин третьего поколения, то есть машин на базе отдельных полупроводниковых элементов и интегральных схем, небольшой плотности (типичные представители - компьютеры семейства IBM 360), пользователи пришли к осознанию необходимости изменения организации использования компьютера. До этого компьютер предоставлялся в распоряжение одного человека (это был либо оператор, выполняющий готовую программу, либо программист, занятый разработкой новой программы). Такой порядок не позволял использовать весь потенциал машины. Поэтому возникла технология так называемой пакетной обработки заданий, характерная тем, что пользователь был отделен от машины. Он должен был заранее подготовить свое задание (чаще всего - в виде колоды перфокарт с управляющими кодами и исходными данными), и передать его в руки операторов, которые формировали очередь заданий. Таким образом, машина получала для обработки сразу несколько заданий и не простаивала в ожидании каждого нового задания или реакции пользователя на свои сообщения. Но и этого оказалось недостаточно: по быстродействию центральный процессор намного опережал внешние устройства, такие как считыватели перфокарт и перфолент, алфавитно-цифровые печатающие устройства, и потому его мощность оказывалась не полностью использованной. Возникла идея организации многозадачного использования процессора. Её суть состояла в том, что процессор как бы одновременно выполнял несколько программ («как бы» - потому, что на самом деле процессор работал по-прежнему последовательно). Но когда, например, в рамках какой-то программы очередь доходила до обмена с внешним устройством, эта операция перепоручалась недорогому специализированному устройству, а центральный процессор переключался на продолжение другой программы и т. д. Таким образом, коэффициент использования аппаратной части вычислительной установки резко возрос. В рамках одного из направлений развития идеи многозадачности появились и так называемые многопультовые системы. Они представляли собою комплексы, состоявшие из центрального компьютера и группы видеотерминалов (числом до нескольких десятков). Человек-оператор, работавший за пультом такого терминала, ощущал себя полным распорядителем машины, поскольку компьютер реагировал на его действия (в том числе команды) с минимальной задержкой. В действительности же центральный компьютер как бы одновременно работал со многими программами, переключаясь с одной на другую в соответствии с определенной дисциплиной (например, уделяя каждому терминалу по нескольку миллисекунд в течение секунды).

В 1971 г. был создан первый микропроцессор, то есть функционально законченное устройство, способное выполнять обязанности центрального процессора (правда, в то время, - весьма маломощного). Это имело значение поворотного момента в истории вычислительной техники. И не только вычислительной: в дальнейшем прогресс микроэлектроники привел к существенным переменам и в других областях - в станкостроении, автомобилестроении, технике связи и т. д. Совершенствование технологии, опиравшееся на достижения фундаментальных наук, на успехи оптики, точного машиностроения, металлургии, керамики и других отраслей, дало возможность получить микропроцессоры со всё большим количеством элементов размещенных на поверхности полупроводникового кристалла со всё большей плотностью, а, значит, - всё более мощные компьютеры. Одновременно, что очень важно, заметно падала и их себестоимость. Забота о возможно более полном использовании вычислительных ресурсов теряла свою остроту, и даже актуальность.

В 1979 г. появился первый персональный компьютер. Мировой лидер в производстве средств вычислительной техники, корпорация IBM, отреагировала на его появление с некоторым запаздыванием, но в 1980 г. выступила на рынке со своим PC IBM, самой важной особенностью которого была так называемая открытая архитектура . Это означает, во-первых, возможность реализации принципа взаимозаменяемости, то есть использования для сборки ПК узлов от разных производителей (лишь бы они соответствовали определенным соглашениям), и во-вторых - возможность доукомплектования ПК, наращивания его мощности уже в ходе его эксплуатации. Это смелое и дальновидное техническое решение дало мощный толчок всей индустрии ПК. Десятки и сотни фирм включились в разработку и производство отдельных блоков и целых ПК, создав большой спрос на элементы, новые материалы, новые идеи. Все последующие годы отмечены фантастически быстрым совершенствованием микропроцессоров (каждые пять лет плотность размещения элементов на полупроводниковом кристалле возрастала в десять раз!), запоминающих устройств (оперативных и накопительных), средств отображения и фиксации данных. И, как уже указывалось, очень существенно то, что одновременно снижались себестоимость и цены на ПК.

В конечном счете, последние два десятилетия ознаменованы широчайшим распространением ПК во всех сферах человеческой деятельности, включая быт, досуг и домашнее хозяйство. Заметны и социальные последствия этого феномена.Стоит отметить, что ПК стали преобладать и как аппаратная база систем управления, вытесняя большие компьютеры, что привело к ряду негативных последствий, в частности, к неприемлемому снижению уровня централизации и частичной потере управляемости, что частично компенсировалось развитием сетевых технологий.

Как и ранее, технологические достижения принесли не только удовлетворение, но и новые проблемы. Усилия по их разрешению приводят к новым интересным результатам как в аппаратной сфере, так и в создании новых программных средств и систем. Проиллюстрируем это положение несколькими примерами.

Увеличение емкости накопителей и снижение стоимости хранения данных дало толчок расширению применения баз данных в составе систем управления разного назначения, возросло осознание ценности баз данных. Отсюда возникла потребность предоставить доступ к информационным ресурсам многим пользователям.Ответом на нее стало создание локальных вычислительных сетей. Такие сети позволяют решить и задачу повышения загрузки дорогостоящих аппаратных средств, например, лазерных или светодиодных принтеров, плоттеров. Появление сетей, в свою очередь, обострило потребность в еще более мощных накопителях и процессорах и т. д.

Увеличение быстродействия процессоров и емкости ОЗУ создало предпосылки для перехода к графическому интерфейсу. Для IBM-подобных компьютеров это была сначала графическая оболочка Windows, а затем - полноценные операционные системы (Windows -95, -98, -2000, -XP). Но одновременно все более ощутимым стало и осознание неполного использования вычислительной мощности аппаратной части компьютера. Возродиласьна новой основе идея многозадачности. Она воплощена в новых операционных системах. Так что работая, например, под Windows 98, можно одновременно выполнять обработку какого–то массива данных, распечатывать результаты предыдущей программы и принимать электронную почту.

Компьютеризация всех сфер жизни вызвала повышенное внимание масс рядовых пользователей к такой важной теме как воздействия компьютера на состояние здоровья. Этому способствуют и многочисленные публикации последнего времени в отечественной и зарубежной прессе. Так, по данным Министерства Труда США, “повторяющиеся травмирующие воздействия при работе с компьютером” обходятся корпоративной Америке в 100 млрд. $ ежегодно. При этом пострадавшие иногда расплачиваются жестокими болями в течение всей жизни. Актуальность проблематики очевидна. Вместе с тем, уровень отечественных медицинских публикаций на эту тему либо сильно завышен и не доступен рядовому пользователю (статьи в изданиях для врачей) либо занижен, так как не предусматривает комплексного анализа ситуации. Обычно авторы популярных изданий сосредотачивают внимание на чем - то одном, и чаще всего это – тема влияния излучений от монитора.

Да, действительно, вокруг монитора присутствуют переменные электрическое и магнитное поля, имеется рентгеновское излучение. Однако технические характеристики мониторов и других частей компьютера в настоящее время жестко контролируются специальными международными стандартами, что исключает вредные воздействия при правильной эксплуатации. Любой уважающий себя производитель или поставщик компьютерного оборудования стремится получить на него сертификат по шведскому стандарту ТСО. Покупателю остается удостовериться в наличии такого сертификата и далее он может быть уверен в высоком качестве монитора. Таким образом, пользователь не должен испытывать своего рода фобии при постоянной работе с компьютером, необходимо лишь уделить должное внимание правильной организации своего рабочего места и соблюдению режима работы. Все необходимые для этого рекомендации содержатся в официальном документе Министерства Здравоохранения РФ “Санитарные правила и нормы. Сан ПиН 2.2.2.542-96.”

Обилие ПК в конторах и на предприятиях иногда создает ложное впечатление об уходе больших и средних машин из сферы управления, из систем обработки деловой информации. Однако это не так. Например, в крупных банках ПК используются в основном как устройства оформления первичных операций и средства общения с клиентами, то есть в качестве терминалов, а все проводки, проверки кредитоспособности и т. п. операции выполняются на больших компьютерах. И на промышленных предприятиях при построении автоматизированных информационных систем также может оказаться более рентабельным применение многопультовой системы на базе большого или среднего компьютера. Так, например, стоимость одного рабочего места в многопультовой системе на базе компьютера типа ЕС 1066 становится ниже, чем при использовании ПК, начиная с числа терминалов, равного 200.

Подводя итоги, можно сказать, что основные наблюдаемые ныне тенденции развития компьютерной техники выражаются в следующем:

    Продолжается рост вычислительной мощности микропроцессоров. При дальнейшем увеличении плотности размещения элементов тактовая частота процессоров перевалила барьер 2 Ггц. Наиболее популярны модели Intel Pentium-4 (высокая скорость без мелких, но часто очень мешающих про­блем), AMD Athlon XP (отличная произво­дительность по приемлемой цене).

    Повышение мощности микропроцессоров позволяет совмещать в одном элементе («на одном кристалле») все большее число устройств. Это, в свою очередь, дает возможность реализовать на одной печатной плате большее число функций и за счет этого сокращать число отдельных блоков компьютера;

    Расширяется набор функций, реализуемых в одном ПК, он становится все более «разносторонним» аппаратом. Особенно наглядно это проявляется в мультимедийном компьютере, который представляет собой, по существу, функциональный комбайн: помимо своих «прямых обязанностей» - обработки алфавитно–цифровой информации он способен работать со звуком (воспроизведение и запись; редактирование, включая создание специальных эффектов и др.); воспроизводить видеосигнал (прием телепередач; запись кадров и их обработка; воспроизведение аналоговых и цифровых видеозаписей, компьютерных анимаций и др.); эффективно работать в компьютерных сетях. Многообразие возможностей требует, в свою очередь, расширения номенклатуры компонентов и существенного повышения мощности базовых блоков.

Сети компьютеров

В настоящее время особо важное значение приобрела конфигурация вычислительной системы, построенная на использовании многих компьютеров, объединенных в сеть. При этом обеспечивается единое информационное пространство сразу для множества пользователей вычислительной системы, что особенно наглядно проявилось на примере всемирной компьютерной сети Internet.

Компьютерной сетью называется совокупность компьютеров, взаимосвязанных через каналы передачи данных, обеспечивающая пользователей средствами обмена информацией и коллективного использования ресурсов сети: аппаратных, программных и информационных.

Объединение компьютеров в сеть позволяет совместно использовать дорогостоящее оборудование - диски большой емкости, принтеры, модемы, оперативную память, иметь общие программные средства и данные. Глобальные сети предоставляют возможность использовать аппаратные ресурсы удаленных компьютеров. Глобальные сети, охватывая миллионы людей, полностью изменили процесс распространения и восприятия информации, сделали обмен информацией через электронную почту самой распространенной услугой сети, а саму информацию - основным ресурсом человека.

Основным назначением сети является обеспечение простого, удобного и надежного доступа пользователя к распределенным общесетевым ресурсам и организация их коллективного использования при надежной защите от несанкционированного доступа, а также обеспечение удобных и надежных средств передачи данных между пользователями сети. С помощью сетей эти проблемы решаются независимо от территориального расположения пользователей.

В эпоху всеобщей информатизации большие объемы информации хранятся, обрабатываются и передаются в локальных и глобальных компьютерных сетях. В локальных сетях создаются общие базы данных для работы пользователей. В глобальных сетях осуществляется формирование единого научного, экономического, социального и культурного информационного пространства.

Помимо сфер научной, деловой, образовательной, общественной и культурной жизни глобальная сеть охватила и сделала доступным для миллионов людей новый вид отдыха и развлечений. Сеть превратилась в инструмент ежедневной работы и организации досуга людей самого разного круга.

Компьютерные сети можно классифицировать по ряду признаков, например, по степени территориальной распределенности. При этом различают глобальные, региональные и локальные сети.

Глобальные сети объединяют пользователей, расположенных по всему миру, используют волоконно-оптические и спутниковые каналы связи, позволяющие соединять узлы сети связи и компьютеры, находящиеся на расстоянии до 10–15 тыс. км друг от друга.

Региональные сети объединяют пользователей города, области, небольших стран. В качестве каналов связи чаще всего используются волоконно-оптические и телефонные линии. Расстояния между узлами сети составляют 10–1000 км.

Локальные сети связывают абонентов одного или близлежащих зданий одного предприятия, учреждения. Локальные сети получили очень широкое распространение, так как 80–90% информации циркулирует вблизи мест ее появления и только 20–10% связано с внешними взаимодействиями. Локальные сети могут иметь любую структуру, но чаще всего компьютеры в локальной сети связаны единым высокоскоростным каналом передачи данных. Единый для всех компьютеров высокоскоростной канал передачи данных - главная отличительная особенность локальных сетей. В качестве канала передачи данных используется витая пара, коаксиальный кабель либо оптический кабель. В оптическом канале световод сделан из кварцевого стекла толщиной в волос, это - наиболее высокоскоростной, надежный, но и дорогостоящий кабель. Расстояния между компьютерами в локальной сети - до 10 км.

Корпоративные сети являются тем примером, который не укладывается в систему классификации сетей по признаку их территориальной распределенности. Например, сеть банка или авиакомпании может связывать компьютеры как в соседних помещениях, так и расположенные на разных континентах. Корпоративная сеть обычно имеет свою особую систему кодирования и защиты информации, что исключает в ней свободный доступ, характерный для глобальных сетей.

Каналы связи в локальных и корпоративных сетях являются собственностью организации, и это серьезно упрощает их эксплуатацию.

Функциональные возможности сети определяются теми услугами, которые она предоставляет пользователю. Для реализации каждой из услуг сети и доступа пользователя к этой услуге разрабатывается специальное программное обеспечение.

Для обеспечения связи между этими сетями используются средства межсетевого взаимодействия, называемые мостами (Bridge) и маршрутизаторами (Router). В качестве моста и маршрутизатора могут использоваться компьютеры, в которых установлено по два или более сетевых адаптера. Каждый из адаптеров обеспечивает связь с одной из связываемых сетей.

Мост или маршрутизатор получает пакеты, посылаемые компьютером одной сети компьютеру другой сети, переадресует их и отправляет по указанному адресу. Мосты, как правило, используются для связи сетей с одинаковыми коммуникационными системами, например для связи двух сетей Ethernet или двух сетей Arcnet. Маршрутизаторы связывают сети с разными коммуникационными системами, так как имеют средства преобразования пакетов одного формата в другой. Существуют мосты-маршрутизаторы (Brouter), объединяющие функции обоих средств.

Для обеспечения связи сетей с различными компьютерными системами предназначены шлюзы (Gateway). Например, в общей структуре корпоративной сети через шлюз локальная сеть может быть связана с мощным внешним компьютером.

Конфигурация вычислительной системы

На выбор конфигурации вычислительной системы решающее влияние оказывает технологический процесс ее работы в конкретных производственных условиях. Можно выделить следующие стандартные этапы работы:

    Зарождение данных , т.е. формирование первичных сообщений, которые фиксируют результаты хозяйственных операций, свойства объектов и субъектов управления, параметры производственных процессов, содержание нормативных и юридических актов и т.д.

    Накопление и систематизация данных , т.е. организация такого размещения данных, которое обеспечивало бы быстрый поиск и отбор нужных сведений, методическое обновление данных, защиту их от искажений, утраты, потери связности и т.п.

    Обработка данных - процессы, в результате которых на основе ранее накопленных данных формируются новые виды данных: обобщающие, аналитические, рекомендательные, прогнозные... Производные данные тоже могут быть подвергнуты дальнейшей обработке и принести сведения более глубокой обобщенности и т.д.

    Отображение данных - представление данных в форме, пригодной для восприятия человеком. Прежде всего - это вывод на печать, т.е. изготовление читаемых человеком документов. Также широко используются такие виды преобразования, как построение графических иллюстративных материалов (графики, диаграммы, пиктограммы, видеограммы), формирование звуковых и видео - сигналов.

Сообщения, формируемые на этапе 1, могут иметь разный вид: либо это обычный бумажный документ, либо машиночитаемое сообщение, либо то и другое одновременно. Что именно - определяет разработчик конфигурации вычислительной системы в зависимости от требуемой степени автоматизации процесса; от управленческой функции, в рамках которой сообщение создано; от бюджета, выделенного на создание системы и т.д. Сообщения, имеющие массовый характер, обязательно переводятся в машиночитаемый вид, так что создание такого сообщения предпочтительно заканчивать на машинном носителе. Специальная аппаратура, реализующая эти операции, носит собирательное название «средства сбора данных» или «средства регистрации первичной информации». Она включает измерители различных типов (электронные весы, счетчики, расходомеры, хронометры), считыватели штрих-кодов, машины для счета банкнот, считыватели магнитных карт и т.п.

Потребности этапов 2 и 3 обычно удовлетворяются базовыми средствами вычислительной техники, в основном - компьютерами. В то же время, информация по некоторым видам управленческих и коммерческих функций вполне может накапливаться и обрабатываться и более дешевыми средствами оргтехники (приборы для использования «электронных» денег, электронные записные книжки, калькуляторы и т.п.).

Средства, обеспечивающие восприятие информации человеком, т.е. средства отображения данных (этап 4), также тяготеют к цифровой вычислительной технике. Это – матричные, струйные, лазерные, светодиодные принтеры, модемы и факс-модемы (используемые также в Интернет – телефонии), специальные звуковые и видео - карты различной мощности, устройства оцифровки фото и видео – изображений, проекторы компьютерных изображений.

Компьютерные информационные технологии 2

(КИТ 2)

КОНСПЕКТ ДЛЯ ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ

1. В.С. Оскерко, З.В. Пунчик. О.А. Сосновский Технологии баз данных. Учебное пособие, Минск БГЭУ 2007.

2. Оскерко В.С., Пунчик З.В. Практикум по технологиям баз данных: Учеб. пособие. Мн.: БГЭУ, 2004.

3. Оскерко, В.С. Компьютерные информационные технологии: учеб пособие: в 3 ч. Ч 2. Базы данных и знаний / В.С. Оскерко, З.В.Пунчик. – Минск: БГЭУ, 2011. – 227 с

В истории развития вычислительной техники можно выделить два основных два направления:

Первое направление - применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. (Пример: конструирование сложных аппаратов, численное моделирование, задачи оптимизации, компьютерные игры и т.д). Становлению этого направления способствовало интенсификации методов численного решения сложных математических задач, развитию языков программирования (FORTRAN, PASCAL, C++ и т.д.)

Второе направление - это использование средств вычислительной техники в автоматических или автоматизированных информационных системах, т.е. программных комплексов для надежного хранения информации в памяти компьютера, поиск и преобразования хранимой информации. Обычно объемы хранимой информации велики (до ГБ, ТБ), а сама информация имеет достаточно сложную структуру. Классическими примерами информационных систем являются банковские системы, системы резервирования авиационных или железнодорожных билетов, мест в гостиницах и т.д.

Это направление возникло несколько позже первого. Это связано с тем, что на заре вычислительной техники компьютеры обладали ограниченными возможностями в части памяти. В начале использовались два вида устройств внешней памяти: магнитные ленты и барабаны. При большой емкости магнитные ленты по своей физической природе обеспечивали последовательный доступ к данным. Магнитные барабаны давали возможность произвольного доступа к памяти, но были ограниченного размера. С появлением магнитных дисков началась история управления данными во внешней памяти. В настоящее время магнитные диски (винчестеры) позволяют хранить сотни и тысячи Гб информации.

Предметом курса КИТ 2 является второе направление- изучение технологий организации, хранения и обработки данных в современных информационных системах.

Курс тесно связан с курсом «Компьютерные информационные технологии 1,3», а также со специальными экономическими дисциплинами.

2. Понятие экономической информации

Термин «информация » происходит от латинского informatio – что означает изложение, разъяснение. В научных и официальных источниках этот термин трактуется по- разному. Будем придерживаться такого определения:



Информация – совокупность фактов, явлений, событий, представляющий интерес, подлежащих регистрации и обработке.

Это понятие теоретически подразумевает взаимодействие двух партнеров: источника и приемника информации. В роли каждого из них может выступать объект науки и техники, общества и природы, животные и люди.

В теории информации под этим термином понимается такое сообщение, которое содержит факты, неизвестные ранее потребителю и дополняющие его представление об изучаемом или анализируемом объекте. Для определения количественной меры информации в 1946 г. американский ученый-статистик Джон Тьюки предложил название БИТ (BIT - аббревиатура от BInary digiT), одно из главных понятий XX века. Тьюки избрал бит для обозначения одного двоичного разряда, способного принимать значение 0 или 1.

В 1948 году американский математик Клод Шеннон использовал бит как единицу измерения информации. Мерой количества информации Шеннон предложил считать функцию, названную им энтропией.

H = -∑ P i log 2 P i , (1)

где P i - вероятность наступления некоторого события.

Из (1) очевидно, что чем менее вероятно событие, тем больше информации оно в себе несет (энтропия Н такого события по Шеннону выше). События, вероятность наступления которых равна или близка к 1 несут в себе мало информации.

Пример

Если нам несколько раз подряд сообщать одни и те же новости, то уже на второй раз мы не получим никакой новой информации, т.к. мы ее уже слышали. Вероятность в этом случае P i =1, и энтропия по Шеннону Н=0, а значит не нужно ни одного бита для представления вновь поступившей информации. С другой стороны, если вероятность наступления новость близка к 0 (такие новости в средствах массовой информации называются сенсацией), то энтропия будет большой и для представления поступившей информации требуется большое количество бит.

Другими словами: информация – это сведения, которые должны снять у потребителя существующую до их получения неопределенность, расширить его понимание объекта полезными для потребителя сведениями.

Информация- это неубывающий ресурс жизнеобеспечения, ее объем в течение времени возрастает. В 70- е годы прошлого столетия объем информации удваивался каждые 5- 7 лет. В 80 –е годы удвоение происходило уже за 20 месяцев, в настоящее время - ежегодно.

Информация охватывает все стороны жизни общества – от материального производства до социальной сферы. По сфере применения в деятельности человека она подразделяется на научно-техническую, производственную, управленческую, социальную и т.п.

Информация, которая обслуживает процессы производства, распределения, обмена и потребления материальных благ и обеспечивает решение задач управления народным хозяйством и его звеньями, называется управленческой . Важным компонентом управленческой информации является экономическая.

Экономическая информация – это совокупность различных сведений экономического характера, используемых для планирования, учета, контроля, анализа и управления народным хозяйством и его звеньями .

Экономическая информация включает сведения о трудовых, материальных и денежных ресурсах и деятельности экономических объектов (предприятий, организаций, банков, фирм и т.д.) на определенный момент времени. Эти сведения представляются натуральными и стоимостными показателями.

Экономическую информацию, циркулирующую в любом экономическом объекте, можно классифицировать по разным признакам:

· по функциям управления – учетная, плановая, статистическая, оперативного управления и др.;

· по месту возникновения – внутренняя и внешняя;

· по стадиям образования – первичная и вторичная;

· по способу представления – цифровая, алфавитно-цифровая, графическая;

· по стабильности – переменная, условно-постоянная, постоянная;

· по полноте – недостаточная, достаточная, избыточная;

· по истинности – достоверная, недостоверная;

· по временному периоду возникновения – периодическая и непериодическая.

Наиболее важными характеристиками экономической информации являются:

Корректность

Полезность

Оперативность

Точность

Достоверность

Устойчивость

Достаточность

Корректность – обеспечивает ее однозначное восприятие всеми потребителями

Ценность (полезность) - проявляется в том случае, если она способствует достижению стоящей перед потребителем цели (Относительность ценности – новая информация может быть более ценной)

Оперативность – отражает актуальность информации для необходимых расчетов и принятия решений в изменившихся условиях

Точность – определяет допустимый уровень искажения информации

Достоверность – определяется свойством информации отражать реально существующие объекты и процессы с необходимой точностью

Устойчивость- отражает способность реагировать на изменения без нарушения необходимой точности. Устойчивость определяется выбранной методикой ее отбора и формирования

Достаточность (полнота) – она содержит минимально необходимый объем сведений для принятия правильного решения. Неполная информация снижает эффективность принятия решений. Избыточность обычно снижает оперативность и затрудняет принятие решения, но зато делает информацию более устойчивой.

Структурными единицами экономической информации являются реквизиты, показатели, документы, массивы.

Реквизиты выражают определенные свойства объекта и подразделяются на реквизиты-признаки и реквизиты-основания.

Реквизит-признак характеризует качественные свойства объекта (например, Ф.И.О. исполнителя, наименования работ, дата заключения договора, и т. д.).

Реквизит-основание дает количественную характеристику объекта, выраженную в определенных единицах измерения (например, количество изделий в штуках, цена продукта в рублях и т. д.)

Реквизиты имеют наименования и значения. Область значений описывается форматом. Формат определяет тип и максимальную длину значений. Тип может быть числовым, символьным, логическим и дата/время. Для записи формата используются определенные символы.

Совокупность реквизита-основания и логически связанных с ним реквизитов-признаков, имеющих экономический смысл, образует показатель .

Пример:

Реквизиты-признаки: «Предприятие», «Ф.И.О. менеджера»

Реквизит-основание: «Количество выполненных заказов»

Показатель: «Количество заказов, выполненных менеджером Петровым А.И., составило 100 заказов».

На основе показателей строятся документы.

Документ – это материальный объект, содержащий информацию, оформленную в установленном порядке, и имеющий в соответствии с действующим законодательством правовое значение. Экономические объекты широко применяют различные документы (платежные поручения, акты, сводки, ведомости и т. д.) для отражения своей деятельности.

Совокупность документов, объединенных по определенному признаку, образует массив . Пример массива – множество финансовых отчетов предприятий некоторой отрасли.

3. Экономические информационные системы

Система (ИС) в широком смысле слова – это совокупность объектов и отношений между ними, образующая единое целое. Системе свойственны:

· делимость – система состоит из ряда элементов, отвечающих конкретным целям и задачам;

· многообразие элементов и различия их природы, что связано с их функциональной специфичностью и автономностью;

· целостность – функционирование множества элементов подчинено единой цели;

· структурированность, обусловленная наличием связей между элементами, которые распределены по уровням иерархии.

На любой стадии развития общество требует для своего управления предварительно подготовленной, систематизированной информации.

Управление – это процесс целенаправленного воздействия на объект или систему, организующий функционирование объекта или системы по заданной программе . Систему, реализующую функции управления, называют системой управления . Кибернетика (наука об управлении) представляет эту систему как совокупность объекта управления и субъекта управления – управленческого аппарата. Управление связано с обменом информацией между компонентами системы, а также системы с окружающей средой.

Информационная система – это система информационного обслуживания работников управленческого аппарата, выполняющая технологические функции по сбору, накоплению, хранению и обработке информации. Основная цель информационной системы – это удовлетворение информационных потребностей пользователей путем предоставления им необходимой информации на основе хранимых данных.

ИС можно рассматривать как сложную систему, состоящую из нескольких взаимодействующих слоев (рис. 1). В основании пирамиды, представляющей ИС, лежит слой компьютеров – центров хранения и обработки информации, и транспортная подсистема, обеспечивающая надежную передачу информации между компьютерами.


Рис.1. Многослойное представление информационной системы

Над транспортной системой работает слой сетевых операционных систем, который организует работу приложений в компьютерах и предоставляет через транспортную систему ресурсы своего компьютера в общее пользование.

Над операционной системой работают различные приложения, но из-за особой роли систем управления базами данных (СУБД), хранящих в упорядоченном виде основную корпоративную информацию и производящих над ней базовые операции поиска, этот класс системных приложений обычно выделяют в отдельный слой ИС.

На следующем уровне работают системные сервисы, которые, пользуясь СУБД, как инструментом для поиска нужной информации среди миллионов и миллиардов байт, хранимых на дисках, предоставляют конечным пользователям эту информацию в удобной для принятия решения форме, а также выполняют некоторые общие для предприятий всех типов процедуры обработки информации. К этим сервисам относится служба WorldWideWeb, система электронной почты, системы коллективной работы и многие другие.

И, наконец, верхний уровень ИС представляют специальные программные системы, которые выполняют задачи, специфические для данного предприятия или предприятий данного типа. Примерами таких систем могут служить системы автоматизации банка, организации бухгалтерского учета, автоматизированного проектирования, управления технологическими процессами и т.п.

Конечная цель ИС воплощена в прикладных программах верхнего уровня, но для их успешной работы абсолютно необходимо, чтобы подсистемы других слоев четко выполняли свои функции.

Стратегические решения, как правило, влияют на облик ИС в целом, затрагивая несколько слоев сетевой "пирамиды", хотя первоначально касаются только одного конкретного слоя или даже отдельной подсистемы этого слоя. Такое взаимное влияние продуктов и решений нужно обязательно учитывать при планировании ИС, иначе можно столкнуться с необходимостью срочной и непредвиденной замены, например, сетевой технологии, из-за

Экономическая информационная система (ЭИС) – это система, функционирование которой во времени заключается в сборе, обработке и распространении информации о деятельности некоторого экономического объекта. Важнейшие функции ЭИС – учет, анализ, контроль, регулирование, прогнозирование и планирование экономических процессов.

Возрастание объемов информации в сфере управления, усложнение ее обработки невозможно без применения вычислительной техники.

Пример

В 30-х годах двадцатого столетия для решения проблем управления тогдашним хозяйством требовалось производить порядка 10 14 математических операций в год, а в средине 70-х, - уже примерно 10 16 . Если принять, что один человек без помощи техники способен произвести в среднем 10 6 операций в год (пропускная способность человека оценивается 2-4 бит/с), то получится, что необходимо около 10 миллиардов человек, для того, чтобы экономика оставалась хорошо управляемой.

Поэтому в настоящее время ЭИС представляет собой компьютеризированную информационную систему, использующую для обмена информацией компьютерные сети и самые современные компьютеры. В курсе «Компьютерные информационные технологии» в дальнейшем будет изучаться самый широкий спектр таких систем, как MRP, ERP, CSRP.

ЭИС могут быть классифицированы по ряду признаков:

· По сфере функционирования объекта управления

ЭИС промышленности

ЭИС сельского хозяйства

ЭИС транспорта

ЭИС связи и т.д.

· По видам процессов управления

o Банковские ЭИС

o АИС фондового рынка

o Финансовые ЭИС

o Страховые ЭИС

o Налоговые ЭИС

o ЭИС таможенной службы

o Статистические ЭИС

o ЭИС промышленных предприятий (бухгалтерия, оперативное управление и т.д.)

o ЭИС научных исследований

· По уровню в системе государственного управления

Отраслевые ЭИС

Территориальные ЭИС

Межотраслевые ЭИС

Важнейшим элементом ЭИС является информационное обеспечение. Информационное обеспечение представляет собой информацию, характеризующую состояние управляемого объекта, и является основой для принятия управленческих решений. Оно включает:

· системы показателей, описывающих деятельность экономического объекта;

· системы классификации и кодирования информации;

· документацию для отображения показателей;

· информационную базу.

Информационная база включает внутреннюю и внешнюю информацию, хранящуюся на различных носителях. Внутренняя информация возникает в самой системе и отражает финансово-хозяйственное состояние экономического объекта в различные временные интервалы. Внешняя информации характеризует состояние рынка и конкурентов, процентные ставки и цены, налоговую политику и политическую ситуацию и др. На основе информационной базы функционирует ЭИС.

Первые электронные вычислительные машины (ЭВМ) появились немногим более 50 лет назад. За это время микроэлектроника, вычислительная техника и вся индустрия информатики стали одними из основных составляющих мирового научно-технического прогресса. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться. В настоящее время ЭВМ используются не только для выполнения сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.д. Это объясняется тем, что ЭВМ способны обрабатывать любые виды информации: числовую, текстовую, табличную, графическую, звуковую, видеоинформацию.

Первая электронная вычислительная машина ЕЫ1ЛС была построена в 1946 г. в рамках одного научно-исследовательского проекта, финансируемого министерством обороны США. Годом ранее Дж. фон Нейман издал статью, в которой были изложены основные принципы построения компьютеров. В основу проекта был положен макет вычислителя, разработанный американцем болгарского происхождения Дж. Атанасовым, занимавшимся крупномасштабными вычислениями. В осуществлении проекта принимали активное участие такие крупные ученые, как К. Шеннон, Н. Виннер, Дж. фон Нейман и др. С этого момента началась эра вычислительной техники. С отставанием в 10-15 лет стала развиваться и отечественная вычислительная техника.

Математические основы автоматических вычислений к этому времени были уже разработаны (Г. Лейбниц, Дж. Буль, Л.Тьюринг и др.), но появление компьютеров стало возможным только благодаря развитию электронной техники. Многократные попытки создания разного рода автоматических вычислительных устройств (от простейших счет до механических и электромеханических вычислителей) не позволяли построить надежные и экономически эффективные машины.

Появление электронных схем сделало возможным построение электронных вычислительных машин.

Электронная вычислительная машина, или компьютер - это комплекс аппаратных и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей (рис. 1).

Под пользователем понимают человека, в интересах которого проводится обработка данных. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы. Как правило, время подготовки задач во много раз превышает время их решения.

Компьютеры являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. Однако подготовка задач к решению на ЭВМ была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователей во многих случаях специальных знаний и навыков.

Для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и ЭВМ в целом, а также облегчения их эксплуатации каждая ЭВМ имеет специальный комплекс программных средств. Обычно аппаратные и программные средства взаимосвязаны и объединяются в одну структуру.

Структура представляет собой совокупность элементов и их связей. В зависимости от контекста различают структуры технических, программных, аппаратно-программных и информационных средств.


Часть программных средств обеспечивает взаимодействие пользователей с ЭВМ и является своеобразным «посредником» между ними. Она получила название операционная система и является ядром программного обеспечения ЭВМ.

Под программным обеспечением будем понимать комплекс программных средств регулярного применения, предназначенный для создания необходимого сервиса для работы пользователей.

Программное обеспечение (ПО) отдельных ЭВМ и вычислительных систем (ВС) может сильно различаться составом используемых программ, который определяется классом используемой вычислительной техники, режимами ее применения, содержанием вычислительных работ пользователей и т.п. Развитие ПО современных ЭВМ и ВС в значительной степени носит эволюционный и эмпирический характер, но можно выделить закономерности в его построении.

Рассмотрим основные вехи и тенденции развития компьютеров, их аппаратных и программных средств (табл. 1).

Таблица 1

Автоматизация подготовки и решения задач на ЭВМ


В общем случае процесс подготовки и решения задач на ЭВМ предусматривает обязательное выполнение следующей последовательности этапов:

1) формулировка проблемы и математическая постановка задачи;

2) выбор метода и разработка алгоритма решения;

3) программирование (запись алгоритма) с использованием некоторого алгоритмического языка;

4) планирование и организация вычислительного процесса - порядка и последовательности использование ресурсов ЭВМ и ВС;

5) формирование «машинной программы», то есть программы, которую непосредственно будет выполнять ЭВМ;

6) собственно решение задачи - выполнение вычислений по готовой программе.

По мере развития вычислительной техники автоматизация этих этапов идет снизу

На пути развития электронной вычислительной техники можно выделить четыре поколения ЭВМ, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ЭВМ со стороны пользователей. Смене поколений сопутствовало изменение основных технико-эксплуатационных и техникоэкономических показателей ЭВМ и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь операторов с машинами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на ЭВМ в различных сферах применения.

Возможности улучшения технико-эксплуатационных показателей ЭВМ в значительной степени зависят от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития ЭВМ каждое поколение в первую очередь, как правило, характеризуется используемой элементной базой.

Основным активным элементом компьютеров первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры - это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти уже с середи

Принципы построения компьютера

ны 50-х годов начали применяться специально разработанные для этой цели элементы - ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройства ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально были разработаны электромеханические запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Компьютеры этого поколения имели значительные размеры, потребляли большую мощность. Быстродействие этих машин составляло от нескольких сотен до нескольких тысяч операций в секунду, емкость памяти - несколько тысяч машинных слов, надежность исчислялась несколькими часами работы.

В этих ЭВМ автоматизации подлежал только шестой этап, так как практически отсутствовало какое-либо программное обеспечение. Все пять предыдущих этапов пользователь должен был готовить вручную самостоятельно, вплоть до получения машинных кодов программ. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. Поэтому в ЭВМ следующих поколений появились сначала элементы, а затем целые системы, облегчающие процесс подготовки задач к решению.

На смену ламп пришли транзисторы в машинах второго поколения (начало 60х годов). Компьютеры стали обладать большими быстродействием, емкостью оперативной памяти, надежностью. Все основные характеристики возросли на 1-2 порядка. Существенно были уменьшены размеры, масса и потребляемая мощность. Большим достижением явилось применение печатного монтажа. Повысилась надежность электромеханических устройств ввода-вывода, удельный вес которых увеличился. Машины второго поколения стали обладать большими вычислительными и логическими возможностями.

Особенность машин второго поколения - их дифференциация по применению. Появились компьютеры для решения научно-технических и экономических задач, для управления производственными процессами и различными объектами (управляющие машины).

Наряду с техническим совершенствованием ЭВМ развиваются методы и приемы программирования вычислений, высшей ступенью которых является появление систем автоматизации программирования, значительно облегчающих труд математиков- программистов.

Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению. С появлением алгоритмических языков резко сократились штаты программистов, поскольку составление программ на этих языках стало под силу самим пользователям.

Широкое применение алгоритмических языков (Автокоды, Алгол, Фортран и др.) и соответствующих им трансляторов, позволяющих автоматически формировать машинные программы по их описанию на алгоритмическом языке, привело к созданию библиотек стандартных программ, что позволило строить машинные программы блоками, используя накопленный и приобретенный программистами опыт. Новые программные средства здесь еще не объединялись в отдельные пакеты под общим управлением. Отметим, что временные границы появления всех этих нововведений достаточно размыты. Обычно их истоки можно обнаружить уже в недрах ЭВМ предыдущих поколений.

Третье поколение ЭВМ (в конце 60-х - начале 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический и функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось еще более

улучшить технические и эксплуатационные характеристики машин. Вычислительная техника стала иметь широкую номенклатуру устройств, позволяющих строить разнообразные системы обработки данных, ориентированные на различные применения. Они охватывали широкий диапазон по производительности, чему способствовало также повсеместное применение многослойного печатного монтажа.

В компьютерах третьего поколения значительно расширился набор различных электромеханических устройств ввода и вывода информации. Развитие этих устройств носит эволюционный характер: их характеристики улучшаются гораздо медленнее, чем характеристики электронного оборудования.

Отличительной особенностью развития программных средств этого поколения является появление ярко выраженного программного обеспечения и развитие его ядра - операционных систем, отвечающих за организацию и управление вычислительным процессом. Именно здесь понятие «ЭВМ» все чаще стало заменяться понятием «вычислительная система», что в большей степени отражало усложнение как аппаратурной, так и программной частей ЭВМ. Стоимость программного обеспечения стала расти, и в настоящее время намного опережает стоимость аппаратуры (рис. 2).

Рис. 2. Динамика изменения стоимости аппаратурных и программных средств


Операционная система (ОС) планирует последовательность распределения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые используются для вычислений: машинное время отдельных процессоров или ЭВМ, входящих в систему; объемы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы как общего, так и специального применения и т.п. Интересно, что наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратурно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсеместно в ЭВМ различных классов.

В машинах третьего поколения существенно расширены возможности по обеспечению непосредственного доступа к ним со стороны абонентов, находящихся на различных, а том числе и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с машиной достигается за счет развитой сети абонентских пунктов, связанных с ЭВМ информационными каналами связи, и соответствующего программного обеспечения.

Например, в режиме разделения времени многим абонентам предоставляется возможность одновременного, непосредственного и оперативного доступа к ЭВМ. Вследствие большого различия инерционности человека и машины у каждого из одновременно работающих абонентов складывается впечатление, будто ему одному предоставлено машинное время.

Здесь еще в большей степени проявляется тенденция к унификации ЭВМ, созданию машин, представляющих собой единую систему. Ярким примером этой тенденции служит отечественная программа создания и развития Единой системы электронных вычислительных машин (ЕС ЭВМ).

ЕС ЭВМ представляла собой семейство (ряд) программно-совместимых машин, построенных на единой элементной базе, на единой конструктивно-технологической основе, с единой структурой, единой системой программного обеспечения и единым унифицированным набором внешних устройств.

Промышленный выпуск первых моделей ЕС ЭВМ был начат в 1972 г., при их создании были использованы все современные достижения в области электронной вычислительной техники, технологии и конструирования ЭВМ, в области построения систем программного обеспечения. Объединение знаний и производственных мощностей стран- разработчиков позволило в довольно сжатые сроки решить сложную комплексную научно-техническую проблему. ЕС ЭВМ представляла собой непрерывно развивающуюся систему, в которой улучшались технико-эксплуатационные показатели машин, совершенствовалось периферийное оборудование и расширялась его номенклатура.

Для машин четвертого поколения (80-е годы) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, усложнению ее функций, повышению надежности и быстродействия, снижению стоимости. Это в свою очередь оказало существенное воздействие на логическую структуру ЭВМ и ее программное обеспечение. Более тесной стала связь структуры машины и ее программного обеспечения, особенно операционной системы.

В четвертом поколении с появлением в США микропроцессоров (1971 г.) возник новый класс вычислительных машин - микроЭВМ, на смену которым пришли персональные компьютеры (ПК, начало 80-х годов). В этом классе ЭВМ наряду с БИС стали использоваться сверхбольшие интегральные схемы (СБИС) 32-, а затем 64-разрядности.

Появление ПК - наиболее яркое событие в области вычислительной техники, до последнего времени самый динамично развивающийся сектор отрасли. С их внедрением решение задач информатизации общества было поставлено на реальную основу.

Основная цель использования ПК - формализация профессиональных знаний. Здесь, в первую очередь, автоматизируется рутинная часть работ (сбор, накопление, хранение и обработка данных), которая занимает более 75% рабочего времени специали- стов-прикладников. Применение ПК позволило сделать труд специалистов творческим, интересным, эффективным. В настоящее время ПК используются повсеместно, во всех сферах деятельности людей. Новые сферы применения изменили и характер вычислительных работ. Так, инженерно-технические расчеты составляют не более 9-15%, в большей степени ПК теперь используются для автоматизации управления сбытом, закупками, управления запасами, производством, для выполнения финансово-экономических расчетов, делопроизводства, игровых задач и т.п.

Применение ПК позволило использовать новые информационные технологии и создавать системы распределенной обработки данных. Высшей стадией систем распределенной обработки данных являются компьютерные (вычислительные) сети различных уровней - от локальных до глобальных.

В компьютерах этого поколения продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества). Следует указать на заметное повышение уровня «интеллектуальности» систем, создаваемых на их основе. Программное обеспечение этих машин создает «дружественную» среду общения человека и компьютера. Оно, с одной стороны, управляет процессом обработки информации, а с другой, создает необходимый сервис для пользователя, снижая трудоемкость его рутинной работы и предоставляя ему возможность больше внимания уделять творчеству.

Подобные тенденции будут сохраняться и в ЭВМ следующих поколений. Так, по мнению исследователей , машины следующего столетия будут иметь встроенный в них «искусственный интеллект», что позволит пользователям обращаться к машинам (системам) на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Все это приводит к необходимости усложнения аппаратной части компьютеров, появлению вычислительных систем на их основе, а также к разработке сложного многоэшелонного иерархического программного обеспечения систем обработки данных.

  • Направления развития компьютерной техники .( тенденции)

    На данный момент активно ведутся разработки молекулярных устройств, оптических и квантовых компьютеров, а также ДНК-компьютеров.

    В основе молекулярных компьютеров лежат бистабильные молекулы, которые могут находится в двух устойчивых термодинамических состояниях. Каждое такое состояние характеризуется своими химическими и физическими свойствами. Переводить молекулы из одного состояния в другое можно с помощью света, тепла, химических агентов, электрических и магнитных полей. По сути, эти молекулы являются транзисторами размером в несколько нанометров.

    Благодаря малым размерам бистабильных молекул можно увеличить количество элементов на единицу площади. Другим достоинством молекул является малое время отклика, которое составляет порядка 10 -15 с. Соединяют функциональные элементы нанотрубки или сопряженные полимеры.

    Другой тип компьютеров нового поколения также основан на молекулах, но уже молекулах ДНК . Впервые ДНК–вычисления были проведены в 1994 г. Леонардом Эдлеманом, профессором Университета Южной Калифорнии, для решения задачи торгового агента. В ДНК-компьютерах роль логических вентилей играют подборки цепочек ДНК, которые образуют друг с другом прочные соединения. Для наблюдения состояния всей системы в последовательность внедрялись флуоресцирующие молекулы. При определенных сочетаниях свечения молекул подавляли друг друга, что соответствовало нулю в двоичной системе. Единице же соответствовало усиленное свечение флюоресцентов. Возможно строить последовательности цепочек, в которых выходной сигнал одной цепочки служит входным сигналом другой.

    Главное достоинство такого компьютера - работоспособность внутри тела человека, что дает возможность, например, осуществлять подачу лекарства там, где это необходимо. Также такие компьютеры позволят моментально производить идентификацию заболеваний в организме.

    Еще два варианта КОМПЬЮТЕРА БУДУЩЕГО - фотонный и квантовый компьютеры. Первый работает на оптических процессах, и все операции в нем выполняются посредством манипуляции оптическим потоком. Преимущества такого компьютера заключаются в свойствах световых потоков. Скорость их распространения выше, чем у электронов, к тому же взаимодействие световых потоков с нелинейными средами не локализовано, а распределено по всей среде, что дает новые степени свободы (по сравнению с электронными системами) в организации связей и создании параллельных архитектур. Производительность оптического процессора может составлять 10 13 -10 15 операций в секунду. На сегодняшний день есть прототипы оптических процессоров, способные выполнять элементарные операции, но полноценных и готовых к производству компьютеров нет.


    Квантовый компьютер основан на законах квантовой механики. Для выполнения операций квантовый компьютер использует не биты, а кубиты - квантовые аналоги битов. В отличие от битов, кубиты могут одновременно находится в нескольких состояниях. Такое свойство кубитов позволяет квантовому компьютеру за единицу времени проводить больше вычислений. Область применения квантового компьютера – переборные задачи с большим числом итераций.

    КВАНТОВЫЙ КОМПЬЮТЕР - проблема создания

    Все прототипы компьютеров будущего – ДНК-компьютеры, молекулярные и фотонные - разные грани одного целого - идеи создания полнофункционального квантового компьютера. Все микрочастицы, будь то кванты, атомы или молекулы - могут быть описаны волновой функцией состояния и подчиняются единым законам квантовой механики. Таким образом, работы над каждым типом компьютеров базируются на одном фундаменте. Но у них есть и общие проблемы. Необходимо научиться объединять частицы в совокупности и работать как с каждой частицей в отдельности, так и с совокупностью в целом. К сожалению, на сегодняшний день технологии не позволяют производить такие манипуляции. К тому же система управления должна поддерживать масштабируемость системы частиц, благодаря которой можно наращивать мощность компьютера. Решение этой проблемы станет очередным прорывом в науке. Над созданием квантового компьютера работают в лабораториях всего мира, в том числе и российских. Например, с 2001 года в Казанском физико-техническом институте начали вести работы в области квантовой памяти и на сегодняшний день исследуют новые твердотельные материалы, пригодные для хранения кубитов. Также решается задача длительности хранения информации, но пока что это время составляет всего несколько миллисекунд. Сергей Моисеев - ведущий научный сотрудник Казанского физико-технического института прокомментировал ситуацию с созданием квантового компьютера так: «Насколько я себе представляю, дело в том, что сложность этой проблемы была не сразу осознана. После того как был проведен первый цикл исследований, были сформулированы проблемы, в том числе и физические, которые предстояло решить. На данный момент создание квантового компьютера напоминает своего рода современный Манхэттенский проект. Цель - создать квантовый компьютер, оперирующий 1000 кубитами, с возможностью его масштабируемости».

    Однако развитие квантового компьютера тормозят не только технические проблемы, но и экономические. Долгое время на решение этой задачи выделялось крайне мало средств, особенно в России. Инновационный проект, в случае его успеха, начнет приносить доход лишь спустя длительное время, при этом на этапе старта потребуются крупные капиталовложения. Сейчас, когда преимущества квантового компьютера стали очевидны, начали появляться и инвестиции, но их доля относительно других отраслей по-прежнему невелика.

    Что же касается текущей ситуации в мире, то уже есть модель, работающая на двух кубитах. Конечно это не 1000, к которым стремятся ученые, но он уже может найти множители, на которые разлагается число. Потенциал же килокубитного квантового компьютера огромен. Он сможет за минуты просчитывать данные, на которые у нынешних систем уйдут годы, а то и десятилетия. С точки зрения информационной безопасности, как только будет построен квантовый компьютер, все системы защиты данных с открытым ключом рухнут, так как квантовый алгоритм позволяет быстро взломать коды. Самый производительный современный компьютер, если и решит эту задачу, то за несколько лет. Сегодня криптозащита держится только по той причине, что квантовый компьютер находится в самом начале своего развития и 2-3-х кубитов не достаточно для взлома шифров.

    Предвидя такое развитие событий, компании задумываются о квантовой криптографии, против которой компьютер нового поколения будет бессилен. Особенность квантовой криптозащиты в том, что при попытке «подслушать» информацию она разрушается по закону неопределенности Гейзенберга. Таким образом, при попытке получить доступ к зашифрованному потоку, информация в нем будет утеряна. Однако не стоит считать неуязвимость квантовой криптозащиты абсолютной, как и в любой системе, в ней есть свои слабые места.

    Специалисты утверждают, что ближайшая реализация квантового компьютера - система finger printing в научном мире известная, как метод характеристических признаков. Она будет содержать примерно 20-30 кубитов и предназначена для выделения «струны» – последовательности данных из базы данных, содержащей небольшой бит информации с некими характерными признаками. И если сравнить эту «струну» со «струной» из другой базы, то с определенной долей вероятности можно определить, одинаковые эти базы данных или нет. В течение нескольких ближайших лет фирма HP собирается представить такой компьютер, работающий на квантовых точках. Нити с определенной вероятностью довольно точно описывают исходную базу. И если две выбранные последовательности признаков совпадают, то можно предположить, что и исходные базы данных одинаковы. Например, при сканировании сетчатки глаза в системе контроля доступа можно снимать информацию не обо всей сетчатке, а только определенные параметры. Совокупность таких параметров и будет «струной». Квантовый компьютер не будет конкурентом нынешним, скорее, он предназначен для решения задач с огромным количеством исходной информации и большим числом переменных. Такие задачи характерны для систем криптографии и безопасной передачи данных, биологии и медицины, моделирования квантовых систем, оптимизации различных процессов.

  • Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png